login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350435
G.f. A(x) = Product_{n>=0} F(n), where F(0) = x, F(1) = 1+x, F(2) = 1 + x*(1+x), and F(n+1) = 1 + (F(n-1) - 1)*(F(n) - 1)*F(n) for n > 1.
0
1, 2, 3, 6, 13, 25, 47, 97, 202, 405, 804, 1620, 3317, 6892, 14473, 30380, 63169, 129986, 265696, 541597, 1104411, 2258693, 4640651, 9583818, 19888842, 41440324, 86582460, 181122452, 378791172, 791010101, 1648083517, 3425009503, 7100406046, 14690106611, 30348419552
OFFSET
1,2
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 3*x^3 + 6*x^4 + 13*x^5 + 25*x^6 + 47*x^7 + 97*x^8 + 202*x^9 + 405*x^10 + 804*x^11 + 1620*x^12 + ...
GENERATING METHOD.
Define F(n), a polynomial in x of order Pell(n), by the following recurrence involving Fibonacci numbers:
F(0) = x,
F(1) = (1 + x),
F(2) = (1 + x * (1+x)),
F(3) = (1 + x^2 * (1+x) * F(2)),
F(4) = (1 + x^3 * (1+x)^2 * F(2) * F(3)),
F(5) = (1 + x^5 * (1+x)^3 * F(2)^2 * F(3) * F(4)),
F(6) = (1 + x^8 * (1+x)^5 * F(2)^3 * F(3)^2 * F(4) * F(5)),
F(7) = (1 + x^13 * (1+x)^8 * F(2)^5 * F(3)^3 * F(4)^2 * F(5) * F(6)),
...
F(n+1) = 1 + (F(n-1) - 1) * (F(n) - 1) * F(n)
...
Then the g.f. A(x) equals the infinite product:
A(x) = x * F(1) * F(2) * F(3) * ... * F(n) * ...
that is,
A(x) = x * (1+x) * (1 + x*(1+x)) * (1 + x^2*(1+x)*(1 + x*(1+x))) * (1 + x^3*(1+x)^2*(1 + x*(1+x))*(1 + x^2*(1+x)*(1 + x*(1+x)))) * ...
PROG
(PARI) {F(n) = my(G=x); if(n==0, G=x, if(n==1, G=1+x, if(n==2, G=1+x*(1+x), G = 1 + (F(n-2) - 1)*(F(n-1) - 1)*F(n-1)))); G}
{a(n) = my(A = prod(k=0, round(log(n)/log(3/2))+1, F(k) +x*O(x^n))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A350432.
Sequence in context: A239326 A075530 A032061 * A155996 A240104 A018274
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 30 2021
STATUS
approved