OFFSET
1,2
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 3*x^3 + 6*x^4 + 13*x^5 + 25*x^6 + 47*x^7 + 97*x^8 + 202*x^9 + 405*x^10 + 804*x^11 + 1620*x^12 + ...
GENERATING METHOD.
Define F(n), a polynomial in x of order Pell(n), by the following recurrence involving Fibonacci numbers:
F(0) = x,
F(1) = (1 + x),
F(2) = (1 + x * (1+x)),
F(3) = (1 + x^2 * (1+x) * F(2)),
F(4) = (1 + x^3 * (1+x)^2 * F(2) * F(3)),
F(5) = (1 + x^5 * (1+x)^3 * F(2)^2 * F(3) * F(4)),
F(6) = (1 + x^8 * (1+x)^5 * F(2)^3 * F(3)^2 * F(4) * F(5)),
F(7) = (1 + x^13 * (1+x)^8 * F(2)^5 * F(3)^3 * F(4)^2 * F(5) * F(6)),
...
F(n+1) = 1 + (F(n-1) - 1) * (F(n) - 1) * F(n)
...
Then the g.f. A(x) equals the infinite product:
A(x) = x * F(1) * F(2) * F(3) * ... * F(n) * ...
that is,
A(x) = x * (1+x) * (1 + x*(1+x)) * (1 + x^2*(1+x)*(1 + x*(1+x))) * (1 + x^3*(1+x)^2*(1 + x*(1+x))*(1 + x^2*(1+x)*(1 + x*(1+x)))) * ...
PROG
(PARI) {F(n) = my(G=x); if(n==0, G=x, if(n==1, G=1+x, if(n==2, G=1+x*(1+x), G = 1 + (F(n-2) - 1)*(F(n-1) - 1)*F(n-1)))); G}
{a(n) = my(A = prod(k=0, round(log(n)/log(3/2))+1, F(k) +x*O(x^n))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 30 2021
STATUS
approved