login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350436
E.g.f. A(x) satisfies: 1 + 4*x = exp(-1) * Sum_{n>=0} A(x)^(n^2) / n!.
0
1, 2, -26, 366, -6270, 99922, -1630730, -33526706, 1685562866, -390576999182, -2936125610490, -3666605533359442, -376235732409401630, -85462222978639050222, -16821593963787582554986, -3977651379054471070911090, -1019617793745769995713403822, -288252359877865826549093001294, -89096129151626329798167571168346
OFFSET
0,2
EXAMPLE
E.g.f. A(x) = 1 + 2*x - 26*x^2/2! + 366*x^3/3! - 6270*x^4/4! + 99922*x^5/5! - 1630730*x^6/6! - 33526706*x^7/7! + 1685562866*x^8/8! - 390576999182*x^9/9! + ...
where
1 + 4*x = exp(-1) * (1 + A(x) + A(x)^4/2! + A(x)^9/3! + A(x)^16/4! + A(x)^25/5! + A(x)^36/6! + A(x)^49/7! + ... + A(x)^(n^2)/n! + ...).
RELATED TABLE.
The table of coefficients of x^k/k! in A(x)^(n^2) begins:
n=0: [1, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 2, -26, 366, -6270, 99922, -1630730, ...];
n=2: [1, 8, -56, -216, 19800, -706472, 14847688, ...];
n=3: [1, 18, 54, -3906, 34290, 1326978, -99273402, ...];
n=4: [1, 32, 544, -4704, -308640, 6962272, 154469920, ...];
n=5: [1, 50, 1750, 25950, -936750, -37790750, 1459186150, ...];
n=6: [1, 72, 4104, 159336, 1906200, -192221928, -7838021880, ...];
n=7: [1, 98, 8134, 535374, 23730210, 239390578, -52296366122, ...]; ...
in which infinite sums of terms along the columns may be illustrated by:
1 = (1 + 1 + 1/2! + 1/3! + 1/4! + 1/5! + ...)/e;
4 = (0 + 2 + 8/2! + 18/3! + 32/4! + 50/5! + ...)/e;
0 = (0 + -26 + -56/2! + 54/3! + 544/4! + 1750/5! + ...);
0 = (0 + 366 + -216/2! + -3906/3! + -4704/4! + 25950/5! + ...);
0 = (0 + -6270 + 19800/2! + 34290/3! + -308640/4! + -936750/5! + ...);
0 = (0 + 99922 + -706472/2! + 1326978/3! + 6962272/4! + -37790750/5! ...); ...
and can be used to determine all the terms of this sequence.
CROSSREFS
Sequence in context: A363985 A126673 A057351 * A359924 A245999 A355725
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 04 2022
STATUS
approved