login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A355725
Row 5 of table A355721.
4
1, 2, 26, 426, 8178, 176802, 4206618, 108577674, 3011332338, 89141101506, 2802596567706, 93232011912426, 3271729161905010, 120810104634555234, 4683805718871051162, 190294015841923438026, 8087576641287426829170, 358981130096398432055682, 16615841072836741527510810
OFFSET
0,2
LINKS
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
FORMULA
O.g.f: A(x) = ( Sum_{k >= 0} d(k+5)/d(5)*x^k )/( Sum_{k >= 0} d(k+4)/d(4)*x^k ), where d(n) = Product_{k = 1..n} (2*k-1) = A001147(n).
A(x) = 1/(1 + 9*x - 11*x/(1 + 11*x - 13*x/(1 + 13*x - 15*x/(1 + 15*x - ... )))).
The o.g.f. satisfies the Riccati differential equation 2*x^2*A'(x) + 9*x*A(x)^2 - (1 + 7*x)*A(x) + 1 = 0 with A(0) = 1.
Applying Stokes 1982 gives A(x) = 1/(1 - 2*x/(1 - 11*x/(1 - 4*x/(1 - 13*x/(1 - 6*x/(1 - 15*x/(1 - ... - 2*n*x/(1 - (2*n+9)*x )))))))), a continued fraction of Stieltjes-type.
MAPLE
n := 5: seq(coeff(series( hypergeom([n+1/2, 1], [], 2*x)/hypergeom([n-1/2, 1], [], 2*x ), x, 21), x, k), k = 0..20);
CROSSREFS
Cf. A001147, A355721 (table), A112934 (row 0), A000698 (row 1), A355722 (row 2), A355723 (row 3), A355724 (row 4).
Sequence in context: A350436 A359924 A245999 * A285026 A137100 A228411
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 15 2022
STATUS
approved