login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228411
G.f.: ( (1 - sqrt(1-32*x)) / (16*x) )^(1/4).
2
1, 2, 26, 476, 10150, 236060, 5807076, 148581048, 3913759878, 105424703020, 2890693930124, 80413849328904, 2263896023453532, 64381391412987672, 1846729385267277960, 53367451809002583408, 1552274439636853988550, 45408989873571191613900, 1335107241077282661195900
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = exp( x*A(x)^8 + Integral(A(x)^8 dx) ).
(2) A(x)^4 = 1 + 8*x*A(x)^8, thus A(x) = C(8*x)^(1/4) where C(x) is the Catalan function (A000108).
a(n) ~ 2^(5*n-3+1/4)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Nov 10 2013
D-finite with recurrence: n*(4*n+1)*a(n) -2*(8*n-3)*(8*n-7)*a(n-1)=0. - R. J. Mathar, Oct 08 2016
a(n) = 8^n*binomial(2*n + 1/4, n)/(8*n + 1). - Vladimir Reshetnikov, Oct 12 2016
EXAMPLE
G.f.: A(x) = 1 + 2*x + 26*x^2 + 476*x^3 + 10150*x^4 + 236060*x^5 +...
where
A(x)^4 = 1 + 8*x + 128*x^2 + 2560*x^3 + 57344*x^4 + 1376256*x^5 +...+ A000108(n)*8^n*x^n +...
MATHEMATICA
CoefficientList[Series[((1-Sqrt[1-32*x])/(16*x))^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 10 2013 *)
Table[8^n Binomial[2 n + 1/4, n]/(8 n + 1), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 12 2016 *)
PROG
(PARI) /* G.f.: ( (1 - sqrt(1-32*x)) / (16*x) )^(1/4): */
{a(n)=polcoeff(( (1 - sqrt(1-32*x +x^2*O(x^n))) / (16*x) )^(1/4), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* G.f.: A(x) = C(8*x)^(1/4), C(x) is Catalan function: */
{a(n)=polcoeff((serreverse(x-8*x^2 +x^2*O(x^n))/x)^(1/4), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* G.f.: A(x) = exp( x*A(x)^8 + Integral(A(x)^8 dx) ): */
{a(n)=local(A=1+x); for(i=1, n, A=exp(x*A^8+intformal(A^8+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A355725 A285026 A137100 * A364827 A371700 A364196
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 09 2013
STATUS
approved