login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228411 G.f.: ( (1 - sqrt(1-32*x)) / (16*x) )^(1/4). 1
1, 2, 26, 476, 10150, 236060, 5807076, 148581048, 3913759878, 105424703020, 2890693930124, 80413849328904, 2263896023453532, 64381391412987672, 1846729385267277960, 53367451809002583408, 1552274439636853988550, 45408989873571191613900, 1335107241077282661195900 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..665

FORMULA

G.f. A(x) satisfies:

(1) A(x) = exp( x*A(x)^8 + Integral(A(x)^8 dx) ).

(2) A(x)^4 = 1 + 8*x*A(x)^8, thus A(x) = C(8*x)^(1/4) where C(x) is the Catalan function (A000108).

a(n) ~ 2^(5*n-3+1/4)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Nov 10 2013

Conjecture: n*(4*n+1)*a(n) -2*(8*n-3)*(8*n-7)*a(n-1)=0. - R. J. Mathar, Oct 08 2016

a(n) = 8^n*binomial(2*n + 1/4, n)/(8*n + 1). - Vladimir Reshetnikov, Oct 12 2016

EXAMPLE

G.f.: A(x) = 1 + 2*x + 26*x^2 + 476*x^3 + 10150*x^4 + 236060*x^5 +...

where

A(x)^4 = 1 + 8*x + 128*x^2 + 2560*x^3 + 57344*x^4 + 1376256*x^5 +...+ A000108(n)*8^n*x^n +...

MATHEMATICA

CoefficientList[Series[((1-Sqrt[1-32*x])/(16*x))^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 10 2013 *)

Table[8^n Binomial[2 n + 1/4, n]/(8 n + 1), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 12 2016 *)

PROG

(PARI) /* G.f.: ( (1 - sqrt(1-32*x)) / (16*x) )^(1/4): */

{a(n)=polcoeff(( (1 - sqrt(1-32*x +x^2*O(x^n))) / (16*x) )^(1/4), n)}

for(n=0, 30, print1(a(n), ", "))

(PARI) /* G.f.: A(x) = C(8*x)^(1/4), C(x) is Catalan function: */

{a(n)=polcoeff((serreverse(x-8*x^2 +x^2*O(x^n))/x)^(1/4), n)}

for(n=0, 30, print1(a(n), ", "))

(PARI) /* G.f.: A(x) = exp( x*A(x)^8 + Integral(A(x)^8 dx) ): */

{a(n)=local(A=1+x); for(i=1, n, A=exp(x*A^8+intformal(A^8+x*O(x^n)))); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A000108, A159318.

Sequence in context: A245999 A285026 A137100 * A216254 A177316 A255538

Adjacent sequences:  A228408 A228409 A228410 * A228412 A228413 A228414

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 09 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 11:11 EST 2020. Contains 331083 sequences. (Running on oeis4.)