login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228409
a(n) = 4*mu(n) + 5, where mu is the Moebius function (A008683).
2
9, 1, 1, 5, 1, 9, 1, 5, 5, 9, 1, 5, 1, 9, 9, 5, 1, 5, 1, 5, 9, 9, 1, 5, 5, 9, 5, 5, 1, 1, 1, 5, 9, 9, 9, 5, 1, 9, 9, 5, 1, 1, 1, 5, 5, 9, 1, 5, 5, 5, 9, 5, 1, 5, 9, 5, 9, 9, 1, 5, 1, 9, 5, 5, 9, 1, 1, 5, 9, 1, 1, 5, 1, 9, 5, 5, 9, 1, 1, 5, 5, 9, 1, 5, 9, 9, 9
OFFSET
1,1
COMMENTS
If n is prime (A000040), then a(n) = 1. The converse is not true: when n is the product of an odd number of distinct primes, mu(n) = -1 => a(n) = 1 (30 = 2*3*5, so a(30) = 1).
If n is semiprime (A001358), a(n) gives the number of divisors of n^2. In particular, if n = p^2 then n^2 = (p^2)^2 = p^4 has 5 divisors: p^4, p^3, p^2, p, 1. If n = pq (p,q distinct primes) then n^2 = (pq)^2 has 9 divisors: (pq)^2, qp^2, pq^2, p^2, q^2, pq, p, q, and 1.
a(n) = 1 if and only if n has an odd number of distinct prime factors, A030059. - Jon Perry, Nov 12 2013.
EXAMPLE
a(6) = 9; 4*mu(6) + 5 = 4*1 + 5 = 9.
MAPLE
with(numtheory); A228409:=n->4*mobius(n)+5; seq(A228409(n), n=1..100);
MATHEMATICA
Table[4 MoebiusMu[n] + 5, {n, 100}]
PROG
(PARI) a(n)=4*moebius(n)+5 \\ Charles R Greathouse IV, Nov 12 2013
(Scheme) (define (A228409 n) (+ 5 (* 4 (A008683 n)))) ;; Antti Karttunen, Jul 26 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Nov 09 2013
STATUS
approved