OFFSET
1,1
COMMENTS
If n is prime (A000040), then a(n) = 1. The converse is not true: when n is the product of an odd number of distinct primes, mu(n) = -1 => a(n) = 1 (30 = 2*3*5, so a(30) = 1).
If n is semiprime (A001358), a(n) gives the number of divisors of n^2. In particular, if n = p^2 then n^2 = (p^2)^2 = p^4 has 5 divisors: p^4, p^3, p^2, p, 1. If n = pq (p,q distinct primes) then n^2 = (pq)^2 has 9 divisors: (pq)^2, qp^2, pq^2, p^2, q^2, pq, p, q, and 1.
LINKS
EXAMPLE
a(6) = 9; 4*mu(6) + 5 = 4*1 + 5 = 9.
MATHEMATICA
Table[4 MoebiusMu[n] + 5, {n, 100}]
PROG
(PARI) a(n)=4*moebius(n)+5 \\ Charles R Greathouse IV, Nov 12 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Nov 09 2013
STATUS
approved