login
A230155
Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=7.
3
9, 1, 1, 5, 9, 2, 3, 5, 3, 4, 8, 2, 0, 5, 4, 9, 1, 8, 6, 2, 8, 6, 7, 3, 6, 7, 2, 4, 9, 4, 0, 5, 0, 1, 7, 7, 3, 7, 5, 8, 8, 4, 6, 9, 4, 3, 6, 1, 4, 1, 3, 9, 4, 6, 9, 5, 5, 7, 6, 2, 6, 5, 3, 9, 2, 3, 4, 4, 3, 4, 8, 8, 2, 5, 2, 4, 0, 4, 1, 2, 8, 9, 8, 9, 5, 8, 0, 1, 2, 7, 5, 4, 7, 3, 9, 0, 7, 0, 9, 4, 3, 0, 0, 0, 1, 9, 6, 8, 6, 8, 7, 3, 6, 8, 9, 5, 6, 5, 8, 7, 3, 2, 9, 6, 8, 1, 6, 2, 9, 4
OFFSET
0,1
COMMENTS
Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-7.
LINKS
EXAMPLE
0.9115923534820549186286736724940501773758846943614139469...
MAPLE
with(numtheory); P:=proc(q, h) local a, n; a:=(q+1)^(1/h);
for n from q by -1 to 1 do a:=(1+a)^(1/h); od;
print(evalf(a, 1000)); end: P(1000, -7);
MATHEMATICA
Root[x^8 + x^7 - 1, 2] // RealDigits[#, 10, 130]& // First (* Jean-François Alcover, Feb 18 2014 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Paolo P. Lava, Oct 11 2013
STATUS
approved