|
|
A030059
|
|
Numbers that are the product of an odd number of distinct primes.
|
|
55
|
|
|
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, 53, 59, 61, 66, 67, 70, 71, 73, 78, 79, 83, 89, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 127, 130, 131, 137, 138, 139, 149, 151, 154, 157, 163, 165, 167, 170, 173, 174, 179, 181, 182, 186, 190, 191, 193
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also solutions to the equation mu(n) = -1.
Sum_{n>=1} 1/a(n)^s = (zeta(s)^2 - zeta(2*s))/(2*zeta(s)*zeta(2*s)). (End) [See A088245 and the Hardy reference. - Wolfdieter Lang, Oct 18 2016]
The lexicographically least sequence of integers > 1 such that for each entry, the number of proper divisors occurring in the sequence is equal to 0 modulo 3. - Masahiko Shin, Feb 12 2018
|
|
REFERENCES
|
B. C. Berndt & R. A. Rankin, Ramanujan: Letters and Commentary, see p. 23; AMS Providence RI 1995.
G. H. Hardy, Ramanujan, AMS Chelsea Publishing, 2002, pp. 64 - 65, (misprint on p. 65, line starting with Hence: it should be ... -1/Zeta(s) not ... -Zeta(s)).
S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv, 21.
H. S. Wilf, A Greeting; and a view of Riemann's Hypothesis, Amer. Math. Monthly, 94:1 (1987), 3-6.
|
|
LINKS
|
|
|
FORMULA
|
omega(a(n)) = A001221(a(n)) gives A005408. {primes A000040} UNION {sphenic numbers A007304} UNION {numbers that are divisible by exactly 5 different primes A051270} UNION {products of 7 distinct primes (squarefree 7-almost primes) A123321} UNION {products of 9 distinct primes; also n has exactly 9 distinct prime factors and n is squarefree A115343} UNION.... - Jonathan Vos Post, Oct 19 2007
|
|
MAPLE
|
a := n -> `if`(numtheory[mobius](n)=-1, n, NULL); seq(a(i), i=1..193); # Peter Luschny, May 04 2009
# alternative
option remember;
local a;
if n = 1 then
2;
else
for a from procname(n-1)+1 do
if numtheory[mobius](a) = -1 then
return a;
end if;
end do:
end if;
|
|
MATHEMATICA
|
|
|
PROG
|
|
|
CROSSREFS
|
Cf. A000040, A001221, A005408, A007304, A008683, A030231, A051270, A123321, A030229 even nmbr. dist. primes), A005117, A088245, A104141.
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|