OFFSET
1,2
COMMENTS
Numbers n such that sum of the square of proper (or aliquot) divisors of n is a square.
All primes are in this sequence. Nonprimes in the sequence are 1, 30, 70, 102, 282, 286, 646, 730, 920, 1242, ... - Charles R Greathouse IV, Dec 06 2011
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
EXAMPLE
a(12)=30 because the aliquot divisors of 30 are 1, 2, 3, 5, 6, 10, 15, the sum of whose squares is 1^2 + 2^2 + 3^2 + 5^2 + 6^2 + 10^2 + 15^2 = 400 = 20^2.
MAPLE
A067558 := proc(n)
numtheory[sigma][2](n)-n^2 ;
end proc:
isA201879 := proc(n)
issqr(A067558(n)) ;
end proc:
for n from 1 to 300 do
if isA201879(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Dec 07 2011
MATHEMATICA
Select[Range[400], IntegerQ[Sqrt[DivisorSigma[2, #]-#^2]]&]
PROG
(PARI) is(n)=issquare(sigma(n, 2)-n^2) \\ Charles R Greathouse IV, Dec 06 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 06 2011
STATUS
approved