login
A319333
Heinz numbers of integer partitions whose sum is equal to their LCM.
8
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 198, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The sequence of partitions whose Heinz numbers are in the sequence begins: (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (3,2,1), (11), (12).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[2, 100], LCM@@primeMS[#]==Total[primeMS[#]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 17 2018
STATUS
approved