login
A319330
Number of integer partitions of n whose length is equal to the GCD of the parts and whose sum is equal to the LCM of the parts.
1
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 0, 2
OFFSET
1,48
EXAMPLE
A list of all such partitions begins (1), (9,6,3), (20,8,8,4), (24,16,4,4), (16,16,12,4), (16,12,12,8), (25,10,5,5,5), (20,15,15,5,5), (20,15,10,10,5).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And[LCM@@#==Total[#], GCD@@#==Length[#]]&]], {n, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 17 2018
EXTENSIONS
a(71)-a(105) from Alois P. Heinz, Sep 18 2018
STATUS
approved