OFFSET
0,1
COMMENTS
A part of Ramanujan's question 629 in the Journal of the Indian Mathematical Society (VII, 40) asked "... deduce the following: 1/2 + Sum_{n>=1} exp(-Pi*n^2) = sqrt(5*sqrt(5)-10) * (1/2 + Sum_{n>=1} exp(-5*Pi*n^2))."
LINKS
B. C. Berndt, Y. S. Choi, and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56, DOI: 10.1090/conm/236 (see Q629, JIMS VII).
B. C. Berndt, Y. S. Choi, and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q629, JIMS VII).
Dan Romik, The Taylor coefficients of the Jacobi theta_3, arXiv:1807.06130 [math.NT], 2018.
FORMULA
Equals Pi^(1/4)/(2*Gamma(3/4)). - Peter Luschny, Jun 11 2020
From Amiram Eldar, May 30 2023: (Start)
Equals Gamma(1/4)/(2*sqrt(2)*Pi^(3/4)).
Equals A327996 / sqrt(Pi). (End)
EXAMPLE
0.54321740560665400728765806075511172853510285362260944296039515799...
MATHEMATICA
RealDigits[Pi^(1/4)/(2*Gamma[3/4]), 10, 120][[1]] (* Amiram Eldar, May 30 2023 *)
PROG
(PARI) 1/2+suminf(n=1, exp(-Pi*n*n))
(PARI) sqrt(5*sqrt(5)-10)*(1/2+suminf(n=1, exp(-5*Pi*n*n)))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Hugo Pfoertner, Sep 18 2018
STATUS
approved