login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319332 Decimal expansion of 1/2 + Sum_{n>0} exp(-Pi*n^2). 1
5, 4, 3, 2, 1, 7, 4, 0, 5, 6, 0, 6, 6, 5, 4, 0, 0, 7, 2, 8, 7, 6, 5, 8, 0, 6, 0, 7, 5, 5, 1, 1, 1, 7, 2, 8, 5, 3, 5, 1, 0, 2, 8, 5, 3, 6, 2, 2, 6, 0, 9, 4, 4, 2, 9, 6, 0, 3, 9, 5, 1, 5, 7, 9, 9, 0, 9, 2, 8, 3, 6, 6, 1, 3, 3, 5, 5, 4, 8, 9, 7, 9, 8, 0, 2, 8, 0, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
A part of Ramanujan's question 629 in the Journal of the Indian Mathematical Society (VII, 40) asked "... deduce the following: 1/2 + Sum_{n>=1} exp(-Pi*n^2) = sqrt(5*sqrt(5)-10) * (1/2 + Sum_{n>=1} exp(-5*Pi*n^2))."
LINKS
B. C. Berndt, Y. S. Choi, and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56, DOI: 10.1090/conm/236 (see Q629, JIMS VII).
B. C. Berndt, Y. S. Choi, and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q629, JIMS VII).
Dan Romik, The Taylor coefficients of the Jacobi theta_3, arXiv:1807.06130 [math.NT], 2018.
FORMULA
Equals Pi^(1/4)/(2*Gamma(3/4)). - Peter Luschny, Jun 11 2020
From Amiram Eldar, May 30 2023: (Start)
Equals Gamma(1/4)/(2*sqrt(2)*Pi^(3/4)).
Equals A327996 / sqrt(Pi). (End)
EXAMPLE
0.54321740560665400728765806075511172853510285362260944296039515799...
MATHEMATICA
RealDigits[Pi^(1/4)/(2*Gamma[3/4]), 10, 120][[1]] (* Amiram Eldar, May 30 2023 *)
PROG
(PARI) 1/2+suminf(n=1, exp(-Pi*n*n))
(PARI) sqrt(5*sqrt(5)-10)*(1/2+suminf(n=1, exp(-5*Pi*n*n)))
CROSSREFS
Sequence in context: A261302 A284803 A071691 * A031017 A266084 A055116
KEYWORD
nonn,cons
AUTHOR
Hugo Pfoertner, Sep 18 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 29 07:09 EST 2024. Contains 370414 sequences. (Running on oeis4.)