login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319332
Decimal expansion of 1/2 + Sum_{n>0} exp(-Pi*n^2).
1
5, 4, 3, 2, 1, 7, 4, 0, 5, 6, 0, 6, 6, 5, 4, 0, 0, 7, 2, 8, 7, 6, 5, 8, 0, 6, 0, 7, 5, 5, 1, 1, 1, 7, 2, 8, 5, 3, 5, 1, 0, 2, 8, 5, 3, 6, 2, 2, 6, 0, 9, 4, 4, 2, 9, 6, 0, 3, 9, 5, 1, 5, 7, 9, 9, 0, 9, 2, 8, 3, 6, 6, 1, 3, 3, 5, 5, 4, 8, 9, 7, 9, 8, 0, 2, 8, 0, 8
OFFSET
0,1
COMMENTS
A part of Ramanujan's question 629 in the Journal of the Indian Mathematical Society (VII, 40) asked "... deduce the following: 1/2 + Sum_{n>=1} exp(-Pi*n^2) = sqrt(5*sqrt(5)-10) * (1/2 + Sum_{n>=1} exp(-5*Pi*n^2))."
LINKS
B. C. Berndt, Y. S. Choi, and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56, DOI: 10.1090/conm/236 (see Q629, JIMS VII).
B. C. Berndt, Y. S. Choi, and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q629, JIMS VII).
Dan Romik, The Taylor coefficients of the Jacobi theta_3, arXiv:1807.06130 [math.NT], 2018.
FORMULA
Equals Pi^(1/4)/(2*Gamma(3/4)). - Peter Luschny, Jun 11 2020
From Amiram Eldar, May 30 2023: (Start)
Equals Gamma(1/4)/(2*sqrt(2)*Pi^(3/4)).
Equals A327996 / sqrt(Pi). (End)
EXAMPLE
0.54321740560665400728765806075511172853510285362260944296039515799...
MATHEMATICA
RealDigits[Pi^(1/4)/(2*Gamma[3/4]), 10, 120][[1]] (* Amiram Eldar, May 30 2023 *)
PROG
(PARI) 1/2+suminf(n=1, exp(-Pi*n*n))
(PARI) sqrt(5*sqrt(5)-10)*(1/2+suminf(n=1, exp(-5*Pi*n*n)))
CROSSREFS
Sequence in context: A261302 A284803 A071691 * A031017 A266084 A055116
KEYWORD
nonn,cons
AUTHOR
Hugo Pfoertner, Sep 18 2018
STATUS
approved