login
A319334
Nonprime Heinz numbers of integer partitions whose sum is equal to their LCM.
1
30, 198, 264, 273, 364, 490, 525, 630, 700, 840, 918, 1120, 1224, 1495, 1632, 1794, 2392, 2420, 2750, 3105, 3450, 3726, 4140, 4263, 4400, 4466, 4921, 4968, 5481, 5520, 5684, 6327, 6624, 7030, 7040, 7308, 8436, 8832, 9744, 11248, 12992, 14079, 14450, 14993
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The sequence of all non-singleton integer partitions whose sum is equal to their LCM begins: (321), (5221), (52111), (642), (6411), (4431), (4332), (43221), (43311), (432111), (72221), (4311111), (722111), (963), (7211111), (9621).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[2, 1000], And[!PrimeQ[#], LCM@@primeMS[#]==Total[primeMS[#]]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 17 2018
STATUS
approved