OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The sequence of all non-singleton integer partitions whose sum is equal to their LCM begins: (321), (5221), (52111), (642), (6411), (4431), (4332), (43221), (43311), (432111), (72221), (4311111), (722111), (963), (7211111), (9621).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[2, 1000], And[!PrimeQ[#], LCM@@primeMS[#]==Total[primeMS[#]]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 17 2018
STATUS
approved