login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291204
Number F(n,h,t) of forests of t labeled rooted trees with n vertices such that the root of each subtree contains the subtree's minimal label and h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.
4
1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 3, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 7, 6, 0, 4, 4, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 15, 25, 10, 0, 14, 30, 10, 0, 8, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 31, 90, 65, 15, 0, 51, 174, 120, 20, 0, 54, 63, 15, 0, 13, 6, 0, 1, 0
OFFSET
0,17
COMMENTS
Elements in rows h=0 give A023531.
Positive elements in rows h=1 give A008277.
Positive row sums per layer (and - with a different offset - positive elements in column t=1) give A179454.
Positive column sums per layer give A132393.
LINKS
FORMULA
Sum_{i=0..n} F(n,i,n-i) = A000325(n).
Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A000142(n).
Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A000254(n).
Sum_{t=0..n-1} F(n,1,t) = A058692(n) = A000110(n) - 1.
F(2n,n,n) = A001791(n) for n>0.
F(2n,1,n) = A007820(n).
F(n,1,n-1) = A000217(n-1) for n>0.
F(n,n-1,1) = A057427(n).
F(n,1,2) = A000225(n-1) for n>2.
F(n,0,n) = 1 = A000012(n).
F(n,0,0) = A000007(n).
EXAMPLE
n h\t: 0 1 2 3 4 5 : A179454 : A132393 : A000142
-----+-----------------+---------+---------------+--------
0 0 : 1 : 1 : 1 : 1
-----+-----------------+---------+---------------+--------
1 0 : 0 1 : 1 : . :
1 1 : 0 : : 1 : 1
-----+-----------------+---------+---------------+--------
2 0 : 0 0 1 : 1 : . . :
2 1 : 0 1 : 1 : . :
2 2 : 0 : : 1 1 : 2
-----+-----------------+---------+---------------+--------
3 0 : 0 0 0 1 : 1 : . . . :
3 1 : 0 1 3 : 4 : . . :
3 2 : 0 1 : 1 : . :
3 3 : 0 : : 2 3 1 : 6
-----+-----------------+---------+---------------+--------
4 0 : 0 0 0 0 1 : 1 : . . . . :
4 1 : 0 1 7 6 : 14 : . . . :
4 2 : 0 4 4 : 8 : . . :
4 3 : 0 1 : 1 : . :
4 4 : 0 : : 6 11 6 1 : 24
-----+-----------------+---------+---------------+--------
5 0 : 0 0 0 0 0 1 : 1 : . . . . . :
5 1 : 0 1 15 25 10 : 51 : . . . . :
5 2 : 0 14 30 10 : 54 : . . . :
5 3 : 0 8 5 : 13 : . . :
5 4 : 0 1 : 1 : . :
5 5 : 0 : : 24 50 35 10 1 : 120
-----+-----------------+---------+---------------+--------
MAPLE
b:= proc(n, t, h) option remember; expand(`if`(n=0 or h=0, x^(t*n), add(
binomial(n-1, j-1)*x^t*b(j-1, 0, h-1)*b(n-j, t, h), j=1..n)))
end:
g:= (n, h)-> b(n, 1, h)-`if`(h=0, 0, b(n, 1, h-1)):
F:= (n, h, t)-> coeff(g(n, h), x, t):
seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..8);
MATHEMATICA
b[n_, t_, h_] := b[n, t, h] = Expand[If[n == 0 || h == 0, x^(t*n), Sum[Binomial[n-1, j-1]*x^t*b[j-1, 0, h-1]*b[n-j, t, h], {j, 1, n}]]];
g[n_, h_] := b[n, 1, h] - If[h == 0, 0, b[n, 1, h - 1]];
F[n_, h_, t_] := Coefficient[g[n, h], x, t];
Table[Table[Table[F[n, h, t], {t, 0, n - h}], {h, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Mar 17 2022, after Alois P. Heinz *)
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, Aug 20 2017
STATUS
approved