The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291336 Number F(n,h,t) of forests of t unlabeled rooted trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows. 4
 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 2, 1, 0, 4, 3, 1, 0, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 3, 2, 1, 0, 6, 8, 3, 1, 0, 8, 4, 1, 0, 4, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 4, 3, 2, 1, 0, 10, 15, 9, 3, 1, 0, 18, 13, 4, 1, 0, 13, 5, 1, 0, 5, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,28 COMMENTS Elements in rows h=0 give A023531. Positive elements in rows h=1 give A008284. Positive row sums per layer (and - with a different offset - positive elements in column t=1) give A034781. Positive column sums per layer give A033185. LINKS Alois P. Heinz, Layers n = 0..48, flattened FORMULA Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A000081(n+1). Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A005197(n). Sum_{h=0..n} Sum_{t=0..n-h} (h+1) * F(n,h,t) = A001853(n+1) for n>0. Sum_{t=0..n-1} F(n,1,t) = A000065(n) = A000041(n) - 1. F(n,1,1) = 1 for n>1. F(n,0,0) = A000007(n). EXAMPLE n h\t: 0 1 2 3 4 5 : A034781 : A033185   : A000081 -----+-------------+---------+-----------+-------- 0 0  : 1           :         :           : 1 -----+-------------+---------+-----------+-------- 1 0  : 0 1         :       1 : .         : 1 1  : 0           :         : 1         : 1 -----+-------------+---------+-----------+-------- 2 0  : 0 0 1       :       1 : . .       : 2 1  : 0 1         :       1 : .         : 2 2  : 0           :         : 1 1       : 2 -----+-------------+---------+-----------+-------- 3 0  : 0 0 0 1     :       1 : . . .     : 3 1  : 0 1 1       :       2 : . .       : 3 2  : 0 1         :       1 : .         : 3 3  : 0           :         : 2 1 1     : 4 -----+-------------+---------+-----------+-------- 4 0  : 0 0 0 0 1   :       1 : . . . .   : 4 1  : 0 1 2 1     :       4 : . . .     : 4 2  : 0 2 1       :       3 : . .       : 4 3  : 0 1         :       1 : .         : 4 4  : 0           :         : 4 3 1 1   : 9 -----+-------------+---------+-----------+-------- 5 0  : 0 0 0 0 0 1 :       1 : . . . . . : 5 1  : 0 1 2 2 1   :       6 : . . . .   : 5 2  : 0 4 3 1     :       8 : . . .     : 5 3  : 0 3 1       :       4 : . .       : 5 4  : 0 1         :       1 : .         : 5 5  : 0           :         : 9 6 3 1 1 : 20 -----+-------------+---------+-----------+-------- MAPLE b:= proc(n, i, t, h) option remember; expand(`if`(n=0 or h=0        or i=1, x^(t*n), b(n, i-1, t, h)+add(x^(t*j)*binomial(        b(i-1\$2, 0, h-1)+j-1, j)*b(n-i*j, i-1, t, h), j=1..n/i)))     end: g:= (n, h)-> b(n\$2, 1, h)-`if`(h=0, 0, b(n\$2, 1, h-1)): F:= (n, h, t)-> coeff(g(n, h), x, t): seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..9); CROSSREFS Cf. A000007, A000041, A000065, A000081, A001853, A005197, A008284, A023531, A033185, A034781, A291203, A291204, A291529. Sequence in context: A320658 A284966 A143540 * A208664 A030200 A287072 Adjacent sequences:  A291333 A291334 A291335 * A291337 A291338 A291339 KEYWORD nonn,look,tabf AUTHOR Alois P. Heinz, Aug 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 00:32 EDT 2020. Contains 336403 sequences. (Running on oeis4.)