login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291333
a(n) = [x^n] 1/(1 - x/(1 - 2^n*x/(1 - 3^n*x/(1 - 4^n*x/(1 - 5^n*x/(1 - ...)))))), a continued fraction.
6
1, 1, 5, 297, 485729, 38103228225, 220579355255364545, 134210828762693919568092033, 11583583466188874003924403353591815169, 183988806081826466732185672966967145613350641690625, 676960735217941793634104089611911809588055950029181968418342810625
OFFSET
0,3
LINKS
FORMULA
a(n) = A290569(n,n).
a(n) ~ c * (n!)^n ~ c * 2^(n/2) * Pi^(n/2) * n^(n*(2*n+1)/2) / exp(n^2-1/12), where c = 1/QPochhammer(exp(-1)) = 1.9824409074128737036856824655613120156828827... - Vaclav Kotesovec, Aug 26 2017, updated Jul 21 2018
MAPLE
seq(coeff(series(numtheory:-cfrac([0, [1, 1], seq([-i^n*x, 1], i=1..n)]), x, n+1), x, n), n=0..15); # Robert Israel, Aug 22 2017
MATHEMATICA
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-i^n x, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 10}]
CROSSREFS
Main diagonal of A290569.
Cf. A036740.
Sequence in context: A256422 A140016 A282967 * A195914 A159012 A158994
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 22 2017
STATUS
approved