This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030200 Expansion of q^(-1/2) * eta(q) * eta(q^11) in powers of q. 5
 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, -1, 0, -1, 0, 0, 0, 0, 2, 1, 0, 2, -1, 0, -1, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 0, 2, 0, 0, 0, 1, -1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, -1, 0, -2, 0, 0, -1, 0, 0, 0, 1, -1, -2, 0, 2, 1, 0, 1, 0, 0, 0, 1, -1, -1, 0, 1, 0, 0, -1, 0, 0, 0, 2, 1, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,24 COMMENTS Number 52 of the 74 eta-quotients listed in Table I of Martin (1996). In [Klein and Fricke 1892] on page 586 equation (3) first line left side has A_0 and the right side the power series r^{1/2} (1 - r - r^2 + r^5 + r^7 + ...) which is the g.f. of this sequence. A_0 and the other A_1, A_3, A_9, A_5, A_4 (in a permuted order) correspond to the nonzero 11-sections of the g.f. of this sequence. - Michael Somos, Nov 12 2014 REFERENCES F. Klein and R. Fricke, Vorlesungen ueber die theorie der elliptischen modulfunctionen, Teubner, Leipzig, 1892, Vol. 2, see p. 586. H. McKean and V. Moll, Elliptic Curves, Cambridge University Press, 1997, page 203. MR1471703 (98g:14032) LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89. Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I. FORMULA Euler transform of period 11 sequence [ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, ...]. - Michael Somos, Nov 20 2006 a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(11^e) = 1, b(p^e) = (e-1)%3 - 1 if f=0, b(p^e) = e+1 if f=3, b(p^e) = (1 + (-1)^e) / 2 if f=1 where f = number of zeros of x^3 - x^2 - x - 1 modulo p. - Michael Somos, Nov 20 2006 G.f.: Product_{k>0} (1 - x^k) * (1 - x^(11*k)). a(n) = sum over all solutions to x^2 + x*y + 3*y^2 = 2*n + 1 with odd integer x>0 of (-1)^y. - Michael Somos, Jan 29 2007 G.f. is a period 1 Fourier series which satisfies f(-1 / (11 t)) = 11^(1/2) (t/i) f(t) where q = exp(2 Pi i t). Convolution square is A006571. EXAMPLE G.f. = 1 - x - x^2 + x^5 + x^7 - x^11 + x^13 - x^15 - x^16 - x^18 + 2*x^23 + ... G.f. = q - q^3 - q^5 + q^11 + q^15 - q^23 + q^27 - q^31 - q^33 - q^37 + 2*q^47 +... MATHEMATICA a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^11], {x, 0, n}]; (* Michael Somos, Nov 12 2014 *) PROG (PARI) {a(n) = if( n<0, 0, n = 2*n + 1; qfrep( [1, 0; 0, 11], n)[n] - qfrep( [3, 1; 1, 4], n)[n])}; /* Michael Somos, Nov 20 2006 */ (PARI) {a(n) = my(A, p, e, f); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==11, 1, f = sum( k=0, p-1, (k^3 - k^2 - k - 1)%p == 0); if( f==0, (e-1)%3-1, if( f==1, (1 + (-1)^e) / 2, e+1)))))}; /* Michael Somos, Nov 20 2006 */ (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^11 + A), n))}; /* Michael Somos, Nov 20 2006 */ (MAGMA) Basis( CuspForms( Gamma1(44), 1), 162) [1]; /* Michael Somos, Nov 13 2014 */ CROSSREFS Cf. A006571, A106276. Sequence in context: A143540 A291336 A208664 * A287072 A095734 A137269 Adjacent sequences:  A030197 A030198 A030199 * A030201 A030202 A030203 KEYWORD sign AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 02:48 EDT 2019. Contains 323434 sequences. (Running on oeis4.)