login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030203
Expansion of q^(-1/6) * eta(q) * eta(q^3) in powers of q.
77
1, -1, -1, -1, 1, 2, -1, 2, 0, 0, -1, -1, -1, -1, 0, 1, -1, -1, 2, 0, 1, 2, 1, -1, 0, -1, 2, -1, 0, -1, -1, 0, -1, -1, 0, -1, -2, 2, 2, 0, -1, 1, 0, 1, 0, -1, 2, 2, 1, 0, -2, 2, -1, 0, -1, -1, -1, 1, -1, 0, 0, -1, -1, -1, 0, 0, 2, -2, -1, 0, -1, 1, 2, 2, 0, 0
OFFSET
0,6
COMMENTS
Number 65 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
S. R. Finch, Powers of Euler's q-Series, (arXiv:math.NT/0701251).
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x) * f(-x^3) where f(-x) := f(-x, -x^2) is a Ramanujan theta function. - Michael Somos, Jul 27 2006
Expansion of q^(-1/6) * sqrt(b(q) * c(q)/3) in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Nov 01 2006
Euler transform of period 3 sequence [ -1, -1, -2, ...]. - Michael Somos, Jul 27 2006
Given g.f. A(x), then B(q) = (q * A(q^6))^2 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 - u^2*w - 4*u*w^2. - Michael Somos, Jul 27 2006
a(n) = b(6*n + 1) where b(n) is multiplicative and b(2^e) = b(3^e) = 0^e, b(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6), b(p^e) = e+1 if p = x^2 + 27*y^2, b(p^e) = [1, -1, 0] depending on e (mod 3) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (108 t)) = 108^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jan 22 2012
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(3*k)).
EXAMPLE
G.f. = 1 - x - x^2 - x^3 + x^4 + 2*x^5 - x^6 + 2*x^7 - x^10 - x^11 - x^12 - x^13 + ...
G.f. = q - q^7 - q^13 - q^19 + q^25 + 2*q^31 - q^37 + 2*q^43 - q^61 - q^67 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^3], {x, 0, n}]; (* Michael Somos, Jan 31 2015 *)
PROG
(PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 6*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 0, p%6==5, (1 + (-1)^e) / 2, (p-1) / znorder( Mod(2, p))%3, kronecker( e+1, 3), e+1)))}; /* Michael Somos, Jul 27 2006 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A), n))}; /* Michael Somos, Jul 27 2006 */
(Magma) Basis( CuspForms( Gamma1(108), 1), 452)[1]; /* Michael Somos, Jan 31 2015 */
CROSSREFS
Sequence in context: A161491 A332998 A301652 * A208978 A333451 A101664
KEYWORD
sign
AUTHOR
STATUS
approved