login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208978
Expansion of f(x) * f(x^3) where f() is a Ramanujan theta function.
2
1, 1, -1, 1, 1, -2, -1, -2, 0, 0, -1, 1, -1, 1, 0, -1, -1, 1, 2, 0, 1, -2, 1, 1, 0, 1, 2, 1, 0, 1, -1, 0, -1, 1, 0, 1, -2, -2, 2, 0, -1, -1, 0, -1, 0, 1, 2, -2, 1, 0, -2, -2, -1, 0, -1, 1, -1, -1, -1, 0, 0, 1, -1, 1, 0, 0, 2, 2, -1, 0, -1, -1, 2, -2, 0, 0, 2
OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 72 of the 74 eta-quotients listed in Table I of Martin (1996).
LINKS
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/6) * (eta(q^2) * eta(q^6))^3 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 1, -2, 2, -1, 1, -4, 1, -1, 2, -2, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (432 t)) = 432^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = b(6*n + 1) where b(n) is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6), b(p^e) = (-1)^(floor(p/6) * e) * t if p == 1 (mod 6) where t = e+1 if p = x^2 + 27*y^2, and t = [1, -1, 0] depending on e (mod 3) otherwise.
G.f.: Product_{k>0} (1 - (-x)^k) * (1 - (-x)^(3*k)).
a(n) = (-1)^n * A030203(n).
EXAMPLE
G.f. = 1 + x - x^2 + x^3 + x^4 - 2*x^5 - x^6 - 2*x^7 - x^10 + x^11 - x^12 + ...
G.f. = q + q^7 - q^13 + q^19 + q^25 - 2*q^31 - q^37 - 2*q^43 - q^61 + q^67 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x] QPochhammer[ -x^3] , {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
PROG
(PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 6*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 0, p%6==5, (1 + (-1)^e)/2, (-1)^(p\6*e) * if( (p-1) / znorder( Mod(2, p))%3, kronecker( e+1, 3), e+1))))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)), n))};
CROSSREFS
Cf. A030203.
Sequence in context: A332998 A301652 A030203 * A333451 A101664 A091952
KEYWORD
sign
AUTHOR
Michael Somos, Mar 03 2012
STATUS
approved