login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208977
Self-convolution square-root of A005810, where A005810(n) = binomial(4*n,n).
0
1, 2, 12, 86, 666, 5388, 44832, 380424, 3275172, 28512248, 250413856, 2215112886, 19711078686, 176276723508, 1583186541144, 14271487891512, 129063176166570, 1170480053359908, 10641805703955624, 96970507481607972, 885397365149468076, 8098908925136867112
OFFSET
0,2
FORMULA
G.f.: A(x) = sqrt( G(x)/(4 - 3*G(x)) ) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. [From a formula by Mark van Hoeij in A005810]
EXAMPLE
G.f.: A(x) = 1 + 2*x + 12*x^2 + 86*x^3 + 666*x^4 + 5388*x^5 +...
The square of the g.f. equals the g.f. of A005810:
A(x)^2 = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + 15504*x^5 +...
The g.f. of A002293 is G(x) = 1 + x*G(x)^4:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
PROG
(PARI) {a(n)=polcoeff(sum(k=0, n, binomial(4*k, k)*x^k +x*O(x^n))^(1/2), n)}
for(n=0, 41, print1(a(n), ", "))
CROSSREFS
Sequence in context: A179495 A348765 A364279 * A372104 A097237 A363255
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 03 2012
STATUS
approved