login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179495
E.g.f. satisfies: A'(x) = [A(x)^2 + A(x)^3]/(x^2 + x^3).
2
0, 1, 2, 12, 84, 820, 9540, 132888, 2129232, 38760048, 788500800, 17740459440, 437238410400, 11716457100192, 339129808346784, 10544636706428160, 350515939418507520, 12404398847785793280, 465618362609300313600
OFFSET
0,3
COMMENTS
a(n) = n * A179496(n-1). - Vaclav Kotesovec, Dec 25 2013
LINKS
Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From N. J. A. Sloane, Feb 06 2013
FORMULA
E.g.f. satisfies: d/dx A_n(x) = [A_n(x)^2 + A_n(x)^3]/(x^2 + x^3) where A_n(x) denotes the n-th iteration of e.g.f. A(x).
...
Define a triangular matrix where the e.g.f. of column k equals (A(x)/x)^k, then the matrix log is the matrix L with L(n+1,n)=L(n+2,n)=n+1 and zeros elsewhere.
a(n) ~ sqrt(1+r) * n^n * r^(n-1) / exp(n), where r = -1-LambertW(-1, -exp(-2)) = 2.146193220620582585237... is the root of the equation log(1+r)=r-1. - Vaclav Kotesovec, Jan 04 2014
EXAMPLE
E.g.f. A(x) = x + 2*x^2/2! + 12*x^3/3! + 84*x^4/4! + 820*x^5/5! +...
Related expansions:
A(x)^2 + A(x)^3 = 2*x^2/2! + 18*x^3/3! + 192*x^4/4! + 2400*x^5/5! +...
A'(x) = 1 + 2*x + 12*x^2/2! + 84*x^3/3! + 820*x^4/4! + 9540*x^5/5! +...
A(x)/x = 1 + x + 4*x^2/2! + 21*x^3/3! + 164*x^4/4! + 1590*x^5/5! +...
...
Define a triangular matrix where the e.g.f. of column k equals A(x)^k:
1;
1, 1;
4/2!, 2, 1;
21/3!, 10/2!, 3, 1;
164/4!, 66/3!, 18/2!, 4, 1;
1590/5!, 592/4!, 141/3!, 28/2!, 5, 1;
18984/6!, 6500/5!, 1428/4!, 252/3!, 40/2!, 6, 1;
266154/7!, 85548/6!, 17430/5!, 2840/4!, 405/3!, 54/2!, 7, 1;
...
then the matrix log of the above matrix equals:
0;
1, 0;
1, 2, 0;
0, 2, 3, 0;
0, 0, 3, 4, 0;
0, 0, 0, 4, 5, 0;
0, 0, 0, 0, 5, 6, 0; ...
MATHEMATICA
nmax = 20; aa = ConstantArray[0, nmax]; aa[[1]] = 1; aa[[2]] = 2; Do[AGF = Sum[aa[[n]]*x^n/n!, {n, 1, j - 1}] + koef*x^j/j!; sol = Solve[Coefficient[D[AGF, x]*(x^2 + x^3) - (AGF^2 + AGF^3), x, j + 1] == 0, koef][[1]]; aa[[j]] = koef /. sol[[1]], {j, 3, nmax}]; Flatten[{0, aa}] (* Vaclav Kotesovec, Dec 25 2013 *)
PROG
(PARI) {a(n)=local(A=x+x^2+O(x^(n+1)), D=1); n!*polcoeff(1+sum(m=1, n+1, (D=A*deriv(x*D+O(x^(n+1))))/m!), n-1)}
CROSSREFS
Cf. A179496.
Sequence in context: A052887 A052867 A226238 * A348765 A364279 A208977
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 25 2010
EXTENSIONS
Minor edits by Vaclav Kotesovec, Mar 31 2014
STATUS
approved