login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179495 E.g.f. satisfies: A'(x) = [A(x)^2 + A(x)^3]/(x^2 + x^3). 2
0, 1, 2, 12, 84, 820, 9540, 132888, 2129232, 38760048, 788500800, 17740459440, 437238410400, 11716457100192, 339129808346784, 10544636706428160, 350515939418507520, 12404398847785793280, 465618362609300313600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = n * A179496(n-1). - Vaclav Kotesovec, Dec 25 2013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From N. J. A. Sloane, Feb 06 2013

FORMULA

E.g.f. satisfies: d/dx A_n(x) = [A_n(x)^2 + A_n(x)^3]/(x^2 + x^3) where A_n(x) denotes the n-th iteration of e.g.f. A(x).

...

Define a triangular matrix where the e.g.f. of column k equals (A(x)/x)^k, then the matrix log is the matrix L with L(n+1,n)=L(n+2,n)=n+1 and zeros elsewhere.

a(n) ~ sqrt(1+r) * n^n * r^(n-1) / exp(n), where r = -1-LambertW(-1, -exp(-2)) = 2.146193220620582585237... is the root of the equation log(1+r)=r-1. - Vaclav Kotesovec, Jan 04 2014

EXAMPLE

E.g.f. A(x) = x + 2*x^2/2! + 12*x^3/3! + 84*x^4/4! + 820*x^5/5! +...

Related expansions:

A(x)^2 + A(x)^3 = 2*x^2/2! + 18*x^3/3! + 192*x^4/4! + 2400*x^5/5! +...

A'(x) = 1 + 2*x + 12*x^2/2! + 84*x^3/3! + 820*x^4/4! + 9540*x^5/5! +...

A(x)/x = 1 + x + 4*x^2/2! + 21*x^3/3! + 164*x^4/4! + 1590*x^5/5! +...

...

Define a triangular matrix where the e.g.f. of column k equals A(x)^k:

1;

1, 1;

4/2!, 2, 1;

21/3!, 10/2!, 3, 1;

164/4!, 66/3!, 18/2!, 4, 1;

1590/5!, 592/4!, 141/3!, 28/2!, 5, 1;

18984/6!, 6500/5!, 1428/4!, 252/3!, 40/2!, 6, 1;

266154/7!, 85548/6!, 17430/5!, 2840/4!, 405/3!, 54/2!, 7, 1;

...

then the matrix log of the above matrix equals:

0;

1, 0;

1, 2, 0;

0, 2, 3, 0;

0, 0, 3, 4, 0;

0, 0, 0, 4, 5, 0;

0, 0, 0, 0, 5, 6, 0; ...

MATHEMATICA

nmax = 20; aa = ConstantArray[0, nmax]; aa[[1]] = 1; aa[[2]] = 2; Do[AGF = Sum[aa[[n]]*x^n/n!, {n, 1, j - 1}] + koef*x^j/j!; sol = Solve[Coefficient[D[AGF, x]*(x^2 + x^3) - (AGF^2 + AGF^3), x, j + 1] == 0, koef][[1]]; aa[[j]] = koef /. sol[[1]], {j, 3, nmax}]; Flatten[{0, aa}] (* Vaclav Kotesovec, Dec 25 2013 *)

PROG

(PARI) {a(n)=local(A=x+x^2+O(x^(n+1)), D=1); n!*polcoeff(1+sum(m=1, n+1, (D=A*deriv(x*D+O(x^(n+1))))/m!), n-1)}

CROSSREFS

Cf. A179496.

Sequence in context: A052887 A052867 A226238 * A348765 A208977 A097237

Adjacent sequences: A179492 A179493 A179494 * A179496 A179497 A179498

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 25 2010

EXTENSIONS

Minor edits by Vaclav Kotesovec, Mar 31 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 12:42 EST 2022. Contains 358586 sequences. (Running on oeis4.)