login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179498
E.g.f. satisfies: A(x) = A(x*A(x))^2 - x*A'(x).
2
1, 1, 6, 78, 1648, 49500, 1957968, 97097336, 5834581632, 414370221696, 34127635732800, 3211425586911168, 341164552018811904, 40517022329819203584, 5335290940894955228160, 773591071307555130451200
OFFSET
0,3
FORMULA
E.g.f. satisfies: x*A(x)^2 equals the g.f. of column 0 in the matrix log of the Riordan array (A(x), x*A(x)).
E.g.f.: A(x) = G(x)/x where G(x) = e.g.f. of A179497.
Let G_n(x) denote the n-th iteration of x*A(x) with G_0(x)=x, then
. [G_{n+1}(x)/x]^2 = A(x)^2*G_n'(x) for all n,
and L=x*A(x)^2 satisfies the series:
. A(x) = 1 + L + L*Dx(L)/2! + L*Dx(L*Dx(L))/3! + L*Dx(L*Dx(L*Dx(L)))/4! +...
. G_{-1}(x)/x = 1 - L + L*Dx(L)/2! - L*Dx(L*Dx(L))/3! + L*Dx(L*Dx(L*Dx(L)))/4! -+...
. G_n(x)/x = 1 + n*L + n^2*L*Dx(L)/2! + n^3*L*Dx(L*Dx(L))/3! + n^4*L*Dx(L*Dx(L*Dx(L)))/4! +...
where Dx(F) = d/dx(x*F).
EXAMPLE
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 78*x^3/3! + 1648*x^4/4! + 49500*x^5/5! +...
Related expansions:
. x*A(x) = x + 2*x^2/2! + 18*x^3/3! + 312*x^4/4! + 8240*x^5/5! +...
. x*A(x)^2 = x + 4*x^2/2! + 42*x^3/3! + 768*x^4/4! + 20680*x^5/5! +..
. x*A'(x) = x + 12*x^2/2! + 234*x^3/3! + 6592*x^4/4! + 247500*x^5/5! +...
. A(x*A(x)) = 1 + x + 8*x^2/2! + 132*x^3/3! + 3400*x^4/4! + 120940*x^5/5! +...
. A(x*A(x))^2 = 1 + 2*x + 18*x^2/2! + 312*x^3/3! + 8240*x^4/4! + 297000*x^5/5! +...
Illustrate the iterations G_n(x) of G(x) = x*A(x) by:
. [G_3(x)/x]^2 = A(x)^2 * G_2'(x);
. [G_4(x)/x]^2 = A(x)^2 * G_3'(x);
. [G_5(x)/x]^2 = A(x)^2 * G_4'(x); ...
which can be shown by the chain rule of differentiation.
...
The RIORDAN ARRAY (A(x), x*A(x)) begins:
. 1;
. 1, 1;
. 6/2!, 2, 1;
. 78/3!, 14/2!, 3, 1;
. 1648/4!, 192/3!, 24/2!, 4, 1;
. 49500/5!, 4136/4!, 348/3!, 36/2!, 5, 1;
. 1957968/6!, 124840/5!, 7680/4!, 552/3!, 50/2!, 6, 1;
. 97097336/7!, 4928256/6!, 233940/5!, 12520/4!, 810/3!, 66/2!, 7, 1; ...
where the g.f. of column k = A(x)^(k+1) for k>=0. ...
The MATRIX LOG of the above Riordan array (A(x), x*A(x)) begins:
. 0;
. 1, 0;
. 4/2!, 2, 0;
. 42/3!, 8/2!, 3, 0;
. 768/4!, 84/3!, 12/2!, 4, 0;
. 20680/5!, 1536/4!, 126/3!, 16/2!, 5, 0;
. 749040/6!, 41360/5!, 2304/4!, 168/3!, 20/2!, 6, 0;
. 34497792/7!, 1498080/6!, 62040/5!, 3072/4!, 210/3!, 24/2!, 7, 0; ...
where the g.f. of column k = (k+1)*x*A(x)^2 for k>=0.
PROG
(PARI) {a(n)=local(A=1+x+sum(m=2, n-1, a(m)*x^m/m!)+x*O(x^(n+5))); if(n<2, n!*polcoeff(A, n), n!*polcoeff(subst(A, x, x*A)^2, n)/(n-1))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 31 2010
STATUS
approved