login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179501
Logarithmic derivative of A179500.
2
1, 3, 10, 43, 276, 3138, 80998, 7043187, 3719589796, 27895892650378, 9982024484486217164, 953757232905143490078932902, 293418537539006210065580840496997061594
OFFSET
1,2
COMMENTS
The g.f. of A179500, G(x), is defined by:
. G(x) = exp( Sum_{n>=1} [Sum_{k>=0} A179500(k)^n* x^k]^n* x^n/n );
the g.f. of this sequence is L(x) = log(G(x)).
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 43*x^4/4 + 276*x^5/5 +...
The g.f. of A179500, G(x) = exp(L(x)), begins:
G(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 74*x^5 + 612*x^6 + 12271*x^7+...
where L(x) = log(G(x)) equals the series:
L(x) = (1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 74*x^5 +...)*x
+ (1 + x + 2^2*x^2 + 5^2*x^3 + 16^2*x^4 + 74^2*x^5 +...)^2*x^2/2
+ (1 + x + 2^3*x^2 + 5^3*x^3 + 16^3*x^4 + 74^3*x^5 +...)^3*x^3/3
+ (1 + x + 2^4*x^2 + 5^4*x^3 + 16^4*x^4 + 74^4*x^5 +...)^4*x^4/4
+ (1 + x + 2^5*x^2 + 5^5*x^3 + 16^5*x^4 + 74^5*x^5 +...)^5*x^5/5 +...
PROG
(PARI) {a(n)=local(L, G, A179500); G=exp(x+sum(k=2, n-1, a(k)*x^k/k)+x*O(x^n)); A179500=Vec(G); L=sum(m=1, n, sum(k=0, n-m, A179500[k+1]^m*x^k+x*O(x^n))^m*x^m/m); n*polcoeff(L, n)}
CROSSREFS
Cf. A179501.
Sequence in context: A181949 A162286 A032269 * A041737 A279105 A246956
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 21 2010
STATUS
approved