login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179503
a(n) = Sum_{k=0..n} C(n,k)*sigma(n,k)*sigma(n,n-k) for n>0 with a(0)=1.
0
1, 2, 38, 352, 8372, 115584, 4900168, 109607936, 5462020742, 210689453568, 11579697409448, 585804318154752, 39828186864515408, 2482740302750253056, 188760627291893696552, 14430243196023615258624
OFFSET
0,2
COMMENTS
sigma(n,k) denotes the sum of the k-th power of the divisors of n.
EXAMPLE
a(2) = 1*2*5 + 2*3*3 + 1*5*2.
a(3) = 1*2*28 + 3*4*10 + 3*10*4 + 1*28*2.
a(4) = 1*3*273 + 4*7*73 + 6*21*21 + 4*73*7 + 1*273*3.
a(5) = 1*2*3126 + 5*6*626 + 10*26*126 + 10*126*26 + 5*626*6 + 1*3126*2.
a(6) = 1*4*47450 + 6*12*8052 + 15*50*1394 + 20*252*252 + 15*1394*50 + 6*8052*12 + 1*47450*4.
PROG
(PARI) a(n)=if(n==0, 1, sum(k=0, n, binomial(n, k)*sigma(n, k)*sigma(n, n-k)))
CROSSREFS
Sequence in context: A226402 A217214 A303618 * A126731 A216357 A046845
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 21 2010
STATUS
approved