login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216357
Expansion of 1/( (1-16*x)*(1+4*x)^2 )^(1/4).
3
1, 2, 38, 404, 5510, 74492, 1048924, 15004776, 217943238, 3200089580, 47405806708, 707305846936, 10616181542044, 160142807848792, 2426097698458360, 36890818642990544, 562772826273060678, 8609639617006367052, 132048790603779592196, 2029851945081220214200
OFFSET
0,2
LINKS
FORMULA
G.f.: exp(Sum_{n>=1} A070775(n)*x^n/n) where A070775(n) = Sum_{k=0..n} binomial(4*n,4*k).
a(n) ~ GAMMA(3/4) * 2^(4*n+1/2) / (Pi* sqrt(5) * n^(3/4)). - Vaclav Kotesovec, Jul 31 2014
a(n) = ((64*n-80)*a(n-2)+(12*n-10)*a(n-1))/n. - Robert Israel, Dec 09 2016
EXAMPLE
G.f.: A(x) = 1 + 2*x + 38*x^2 + 404*x^3 + 5510*x^4 + 74492*x^5 + 1048924*x^6 + ...
where 1/A(x)^4 = 1 - 8*x - 112*x^2 - 256*x^3.
The logarithm of the g.f. begins:
log(A(x)) = x + 2*x^2/2 + 72*x^3/3 + 992*x^4/4 + 16512*x^5/5 + 261632*x^6/6 + 4196352*x^7/7 + ... + A070775(n)*x^n/n + ...
MAPLE
f:= gfun:-rectoproc({(48+64*n)*a(n)+(14+12*n)*a(n+1)+(-n-2)*a(n+2), a(0) = 1, a(1) = 2}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Dec 09 2016
MATHEMATICA
a = DifferenceRoot[Function[{a, n}, {(48+64n) a[n] + (14+12n) a[1+n] + (-2-n) a[2+n] == 0, a[0] == 1, a[1] == 2}]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Sep 16 2022, after Robert Israel *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(4*m, 4*j))*x^m/m+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 04 2012
STATUS
approved