login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216316 G.f.: 1/( (1-8*x)*(1+x)^2 )^(1/3). 4
1, 2, 13, 80, 538, 3740, 26650, 193160, 1417945, 10511450, 78533629, 590485208, 4463274232, 33886781840, 258260802232, 1974759985952, 15143163422794, 116417053435316, 896996316176290, 6925241271855296, 53562550587963052, 414948608904171464, 3219356873886333676 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: exp( Sum_{n>=1} A007613(n)*x^n/n ) where A007613(n) = Sum_{k=0..n}  binomial(3*n,3*k).

Recurrence: n*a(n) = (7*n-5)*a(n-1) + 8*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 20 2012

a(n) ~ Gamma(2/3)*2^(3*n+1)/(3^(5/6)*Pi*n^(2/3)). - Vaclav Kotesovec, Oct 20 2012

EXAMPLE

G.f.: A(x) = 1 + 2*x + 13*x^2 + 80*x^3 + 538*x^4 + 3740*x^5 + 26650*x^6 +...

where 1/A(x)^3 = 1 - 6*x - 15*x^2 - 8*x^3.

The logarithm of the g.f. begins:

log(A(x)) = 2*x + 22*x^2/2 + 170*x^3/3 + 1366*x^4/4 + 10922*x^5/5 + 87382*x^6/6 +...+ A007613(n)*x^n/n +...

MATHEMATICA

CoefficientList[Series[1/((1-8*x)*(1+x)^2)^(1/3), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

PROG

(PARI) {a(n)=polcoeff(1/( (1-8*x)*(1+x)^2 +x*O(x^n) )^(1/3), n)}

(PARI) {a(n)=local(A=1+x); A=exp(sum(m=1, n+1, sum(j=0, m, binomial(3*m, 3*j))*x^m/m +x*O(x^n))); polcoeff(A, n)}

for(n=0, 31, print1(a(n), ", "))

CROSSREFS

Cf. A216317, A216357, A216358, A007613.

Sequence in context: A037491 A037571 A179237 * A000179 A246383 A189087

Adjacent sequences:  A216313 A216314 A216315 * A216317 A216318 A216319

KEYWORD

nonn,easy

AUTHOR

Paul D. Hanna, Sep 03 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 08:08 EST 2019. Contains 329968 sequences. (Running on oeis4.)