login
A179500
G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k>=0} a(k)^n* x^k]^n* x^n/n ).
2
1, 1, 2, 5, 16, 74, 612, 12271, 893422, 414194958, 2790004382642, 907459561737399050, 79479770316224310083608800, 22570656733849188237806831031463922346
OFFSET
0,3
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 74*x^5 + 612*x^6 +...
The logarithm (A179501) begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 43*x^4/4 + 276*x^5/5 + 3138*x^6/6 + 80998*x^7/7 + 7043187*x^8/8 + 3719589796*x^9/9 +...
and equals the series:
log(A(x)) = (1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 74*x^5 +...)*x
+ (1 + x + 2^2*x^2 + 5^2*x^3 + 16^2*x^4 + 74^2*x^5 +...)^2*x^2/2
+ (1 + x + 2^3*x^2 + 5^3*x^3 + 16^3*x^4 + 74^3*x^5 +...)^3*x^3/3
+ (1 + x + 2^4*x^2 + 5^4*x^3 + 16^4*x^4 + 74^4*x^5 +...)^4*x^4/4
+ (1 + x + 2^5*x^2 + 5^5*x^3 + 16^5*x^4 + 74^5*x^5 +...)^5*x^5/5 +...
More explicitly,
log(A(x)) = (1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 74*x^5 +...)*x
+ (1 + 2*x + 9*x^2 + 58*x^3 + 578*x^4 + 11664*x^5 +...)*x^2/2
+ (1 + 3*x + 27*x^2 + 424*x^3 + 13254*x^4 +...)*x^3/3
+ (1 + 4*x + 70*x^2 + 2696*x^3 + 271373*x^4 +...)*x^4/4
+ (1 + 5*x + 170*x^2 + 16275*x^3 + 5316585*x^4 +...)*x^5/5 +...
PROG
(PARI) {a(n)=local(A); A=exp(sum(m=1, n, sum(k=0, n-m, a(k)^m*x^k+x*O(x^n))^m*x^m/m)); if(n==0, 1, polcoeff(A, n))}
CROSSREFS
Cf. A179501.
Sequence in context: A078639 A002632 A020127 * A377569 A121396 A371829
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 21 2010
STATUS
approved