login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179500
G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k>=0} a(k)^n* x^k]^n* x^n/n ).
2
1, 1, 2, 5, 16, 74, 612, 12271, 893422, 414194958, 2790004382642, 907459561737399050, 79479770316224310083608800, 22570656733849188237806831031463922346
OFFSET
0,3
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 74*x^5 + 612*x^6 +...
The logarithm (A179501) begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 43*x^4/4 + 276*x^5/5 + 3138*x^6/6 + 80998*x^7/7 + 7043187*x^8/8 + 3719589796*x^9/9 +...
and equals the series:
log(A(x)) = (1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 74*x^5 +...)*x
+ (1 + x + 2^2*x^2 + 5^2*x^3 + 16^2*x^4 + 74^2*x^5 +...)^2*x^2/2
+ (1 + x + 2^3*x^2 + 5^3*x^3 + 16^3*x^4 + 74^3*x^5 +...)^3*x^3/3
+ (1 + x + 2^4*x^2 + 5^4*x^3 + 16^4*x^4 + 74^4*x^5 +...)^4*x^4/4
+ (1 + x + 2^5*x^2 + 5^5*x^3 + 16^5*x^4 + 74^5*x^5 +...)^5*x^5/5 +...
More explicitly,
log(A(x)) = (1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 74*x^5 +...)*x
+ (1 + 2*x + 9*x^2 + 58*x^3 + 578*x^4 + 11664*x^5 +...)*x^2/2
+ (1 + 3*x + 27*x^2 + 424*x^3 + 13254*x^4 +...)*x^3/3
+ (1 + 4*x + 70*x^2 + 2696*x^3 + 271373*x^4 +...)*x^4/4
+ (1 + 5*x + 170*x^2 + 16275*x^3 + 5316585*x^4 +...)*x^5/5 +...
PROG
(PARI) {a(n)=local(A); A=exp(sum(m=1, n, sum(k=0, n-m, a(k)^m*x^k+x*O(x^n))^m*x^m/m)); if(n==0, 1, polcoeff(A, n))}
CROSSREFS
Cf. A179501.
Sequence in context: A078639 A002632 A020127 * A377569 A121396 A371829
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 21 2010
STATUS
approved