OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = 1/Product{k>=1} (1 - x^k*A(k*x)). - Paul D. Hanna, Jul 01 2009
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 43*x^4 + 232*x^5 + 1658*x^6 + ...
log(A(x)) = A(x)*x + [A(2x) + A(x)^2/2]*x^2 + [A(3x) + A(x)^3/3]*x^3 + [A(4x) + A(2x)^2/2 + A(x)^4/4]*x^4 + ...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sumdiv(m, d, m*subst(A, x, m*x/d+x*O(x^n))^d/d)*x^m/m))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, 1-x^k*subst(A, x, k*x+x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Jul 01 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2009
STATUS
approved