login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162286
G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{d|n} A(n*x/d)^d/d]*x^n ).
1
1, 1, 3, 10, 43, 232, 1658, 16041, 214998, 4034263, 106718470, 3996978281, 212525227794, 16073873629022, 1731645876520667, 265992096914842633, 58303791955275494006, 18248056245233786876850, 8159322089091615235254206
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = 1/Product{k>=1} (1 - x^k*A(k*x)). - Paul D. Hanna, Jul 01 2009
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 43*x^4 + 232*x^5 + 1658*x^6 + ...
log(A(x)) = A(x)*x + [A(2x) + A(x)^2/2]*x^2 + [A(3x) + A(x)^3/3]*x^3 + [A(4x) + A(2x)^2/2 + A(x)^4/4]*x^4 + ...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sumdiv(m, d, m*subst(A, x, m*x/d+x*O(x^n))^d/d)*x^m/m))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, 1-x^k*subst(A, x, k*x+x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Jul 01 2009
CROSSREFS
Sequence in context: A006932 A001040 A181949 * A032269 A179501 A041737
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2009
STATUS
approved