login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006932 Number of permutations of [n] with at least one strong fixed point (a permutation p of {1,2,...,n} is said to have j as a strong fixed point if p(k) < j for k < j and p(k) > j for k > j).
(Formerly M2862)
5
1, 1, 3, 10, 43, 223, 1364, 9643, 77545, 699954, 7013079, 77261803, 928420028, 12085410927, 169413357149, 2544367949634, 40758600588283, 693684669653911, 12499734669634036, 237734433597317987, 4759174459355303521 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n) is also the number of permutation graphs with domination number one. See Definition 2.1, Lemma 2.3, and page 16 in the paper provided in the link by Theresa Baren, et al. - Daniel A. McGinnis, Oct 16 2018

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Stanley, R. P., Enumerative Combinatorics, Volume 1 (1986), p. 49.

K. Wayland, personal communication.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Theresa Baren, Michael Cory, Mia Friedberg, Peter Gardner, James Hammer, Joshua Harrington, Daniel McGinnis, Riley Waechter, Tony W. H. Wong, On the Domination Number of Permutation Graphs and an Application to Strong Fixed Points, arXiv:1810.03409 [math.CO], 2018.

Todd Feil, Gary Kennedy and David Callan, Problem E3467, Amer. Math. Monthly, 100 (1993), 800-801.

V. Strehl, The average number of splitters in a random permutation [Unpublished; included here with the author's permission.]

FORMULA

a(n) ~ 2 * (n-1)! * (1 - 1/(2*n) + 1/(2*n^2) + 9/(2*n^3) + 59/(2*n^4) + 237/n^5 + 2280/n^6 + 25182/n^7 + 625385/(2*n^8) + 4311329/n^9 + 65375943/n^10). - Vaclav Kotesovec, Mar 17 2015

a(n) = Sum_{k=1..n} (n-k)!*A145878(k-1,0). See the link by Theresa Baren, et al. - Daniel A. McGinnis, Oct 15 2018

MAPLE

t1 := sum(n!*x^n, n=0..100): F := series(t1/(1+x*t1), x, 100): for i from 1 to 40 do printf(`%d, `, i!-coeff(F, x, i)) od: # James A. Sellers, Mar 13 2000

MATHEMATICA

m = 22; s = Sum[n!*x^n, {n, 0, m}]; Range[0, m-1]! - CoefficientList[Series[s/(1+x*s), {x, 0, m}], x][[1;; m]] // Rest (* Jean-Fran├žois Alcover, Apr 28 2011, after Maple code *)

CROSSREFS

Cf. A052186, A145878.

Sequence in context: A157313 A030971 A248687 * A001040 A181949 A162286

Adjacent sequences:  A006929 A006930 A006931 * A006933 A006934 A006935

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from James A. Sellers, Mar 13 2000

Edited by Emeric Deutsch, Oct 29 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 15:55 EST 2018. Contains 317323 sequences. (Running on oeis4.)