%I #6 Feb 03 2018 05:19:07
%S 1,1,3,10,43,232,1658,16041,214998,4034263,106718470,3996978281,
%T 212525227794,16073873629022,1731645876520667,265992096914842633,
%U 58303791955275494006,18248056245233786876850,8159322089091615235254206
%N G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{d|n} A(n*x/d)^d/d]*x^n ).
%F G.f. satisfies: A(x) = 1/Product{k>=1} (1 - x^k*A(k*x)). - _Paul D. Hanna_, Jul 01 2009
%e G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 43*x^4 + 232*x^5 + 1658*x^6 + ...
%e log(A(x)) = A(x)*x + [A(2x) + A(x)^2/2]*x^2 + [A(3x) + A(x)^3/3]*x^3 + [A(4x) + A(2x)^2/2 + A(x)^4/4]*x^4 + ...
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,sumdiv(m,d,m*subst(A,x,m*x/d+x*O(x^n))^d/d)*x^m/m)));polcoeff(A,n)}
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1/prod(k=1,n,1-x^k*subst(A,x,k*x+x*O(x^n))));polcoeff(A,n)} \\ _Paul D. Hanna_, Jul 01 2009
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jun 29 2009