login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162656
E.g.f. satisfies: A(x) = (1 + x*A(x))^(A(x)^2).
6
1, 1, 6, 78, 1564, 42660, 1475028, 61838000, 3048628336, 172850367744, 11081419939680, 792685606699008, 62593631986243488, 5408185369666834560, 507526235156395322112, 51407696054804232576000
OFFSET
0,3
LINKS
FORMULA
(1) a(n) = Sum_{k=0..n} (n+2k+1)^(k-1) * Stirling1(n,k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
(2) a(n,m) = Sum_{k=0..n} m*(n+2k+m)^(k-1) * Stirling1(n,k) ;
which is equivalent to the following:
(3) a(n,m) = Sum_{k=0..n} m*(n+2k+m)^(k-1) * {[x^(n-k)] Product_{j=1..n-1} (1-j*x) };
(4) a(n,m) = n!*Sum_{k=0..n} m*(n+2k+m)^(k-1) * {[x^(n-k)] (log(1+x)/x)^k/k!}.
a(n) ~ s^2*sqrt(r*s*(1+r*s) / (2+r*s*(4+3*s^2+2*r*s*(1+s^2)))) * n^(n-1) / (exp(n)*r^n), where r = 0.1337990328596883051... and s = 1.408676495644569372... are roots of the system of equations s^2*(r*s + 2*(1+r*s)*log(1+r*s)) = 1+r*s, (1+r*s)^(s^2) = s. - Vaclav Kotesovec, Jul 15 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 78*x^3/3! + 1564*x^4/4! + 42660*x^5/5! +...
log(A(x)) = A(x)^2*log(1 + x*A(x)) where
log(A(x)) = x + 5*x^2/2! + 62*x^3/3! + 1210*x^4/4! + 32464*x^5/5! +...
log(1 + x*A(x)) = x + x^2/2! + 14*x^3/3! + 246*x^4/4! + 6284*x^5/5! +...
MATHEMATICA
Table[Sum[(n+2*k+1)^(k-1) * StirlingS1[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 15 2014 *)
PROG
(PARI) {a(n, m=1)=sum(k=0, n, m*(n+2*k+m)^(k-1)*polcoeff(prod(j=1, n-1, 1-j*x), n-k))}
(PARI) {a(n, m=1)=sum(k=0, n, m*(n+2*k+m)^(k-1)*n!/k!*polcoeff((log(1+x+x*O(x^n))/x)^k, n-k))}
(PARI) a(n, m=1)=sum(k=0, n, m*(n+2*k+m)^(k-1)*stirling(n, k, 1));
CROSSREFS
Cf. A008275 (Stirling1), variants: A162655, A141209.
Sequence in context: A229044 A300874 A049209 * A332680 A376093 A179498
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 08 2009
STATUS
approved