OFFSET
1,2
COMMENTS
First occurrence of n in A017666.
Conjecture: a(n) is never zero. Checking up to 1000000, the smallest number not found is 210; and a(210) = 26611200.
n|a(n), since sigma_{-1}(n) = sigma(n)/n. a(n) = n for n any prime power (and many others).
Up to 1000, the maximum value is a(330) = 1890345600. - Michel Marcus, Aug 14 2012
Actually, a(n) = n, for n in A014567. - Michel Marcus, Dec 28 2013
Up to 10000, the largest term is a(9570) = 22033432080000. - Giovanni Resta, Mar 22 2014
LINKS
Michel Marcus and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from Michel Marcus)
MATHEMATICA
a[n_] := Catch[ For[ lim = Quotient[2*10^9, n]*n; k = 0, k <= lim, k = k + n, If[Denominator[ DivisorSigma[-1, k]] == n, Throw[k]]; If[k >= lim, Throw[0]]]]; a[1]=1; Table[ an = a[n]; Print[{n, an}]; an , {n, 1, 1000}] (* Jean-François Alcover, Aug 14 2012 *)
PROG
(PARI) al(n, lim=100000)=local(r, d); r=vector(n); for(k=1, lim, d=denominator(sigma(k, -1)); if(d<=n&&r[d]==0, r[d]=k)); r
a(n, lim=1000000)=forstep(m=n, lim, n, if(denominator(sigma(m, -1))==n, return(m))); 0
CROSSREFS
KEYWORD
nonn
AUTHOR
Franklin T. Adams-Watters, Jul 08 2009
STATUS
approved