login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162660
Triangle read by rows: coefficients of the complementary Swiss-Knife polynomials.
7
0, 1, 0, 0, 2, 0, -2, 0, 3, 0, 0, -8, 0, 4, 0, 16, 0, -20, 0, 5, 0, 0, 96, 0, -40, 0, 6, 0, -272, 0, 336, 0, -70, 0, 7, 0, 0, -2176, 0, 896, 0, -112, 0, 8, 0, 7936, 0, -9792, 0, 2016, 0, -168, 0, 9, 0, 0, 79360, 0, -32640, 0, 4032, 0, -240, 0, 10, 0
OFFSET
0,5
COMMENTS
Definition. V_n(x) = (skp(n, x+1) - skp(n, x-1))/2 where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Jul 23 2012
Equivalently, let the polynomials V_n(x) (n>=0) defined by V_n(x) = Sum_{k=0..n} Sum_{v=0..k} (-1)^v*C(k,v)*L(k)*(x+v+1)^n; the sequence L(k) = -1 - H(k-1)*(-1)^floor((k-1)/4) / 2^floor(k/2) if k > 0 and L(0)=0; H(k) = 1 if k mod 4 <> 0, otherwise 0.
(1) V_n(0) = 2^n * Euler(n,1) for n > 0, A155585.
(2) V_n(1) = 1 - Euler(n).
(3) V_{n-1}(0) n / (4^n - 2^n) = B_n gives for n > 1 the Bernoulli numbers A027641/A027642.
(4) V_{n-1}(0) n (2/2^n-2)/(2^n-1) = G_n the Genocchi number A036968 for n > 1.
(5) V_n(1/2)2^{n} - 1 is a signed version of the generalized Euler (Springer) numbers, see A001586.
The Swiss-Knife polynomials (A153641) are complementary to the polynomials defined here. Adding both gives polynomials with e.g.f. exp(x*t)*(sech(t)+tanh(t)), the coefficients of which are a signed variant of A109449.
The Swiss-Knife polynomials as well as the complementary Swiss-Knife polynomials are closely related to the Bernoulli and Euler polynomials. Let F be a sequence and
P_{F}[n](x) = Sum_{k=0..n} Sum_{v=0..k} (-1)^v*C(k,v)*F(k)*(x+v+1)^n.
V_n(x) = P_{F}[n](x) with F(k)=L(k) defined above, are the Co-Swiss-Knife polynomials,
W_n(x) = P_{F}[n](x) with F(k)=c(k) the Chen sequence defined in A153641 are the Swiss-Knife polynomials.
B_n(x) = P_{F}[n](x-1) with F(k)=1/(k+1) are the Bernoulli polynomials,
E_n(x) = P_{F}[n](x-1) with F(k)=2^(-k) are the Euler polynomials.
The most striking formal difference between the Swiss-Knife-type polynomials and the Bernoulli-Euler type polynomials is: The SK-type polynomials have integer coefficients whereas the BE-type polynomials have rational coefficients.
Let R be the exponential Riordan array (exp(x)*sech(x), x) = P * A119879 = 2*P(I + P^2)^(-1) where P denotes Pascal's triangle A007318. Then T = R - I. - Peter Bala, Mar 07 2024
LINKS
Leonhard Euler (1735), De summis serierum reciprocarum, Opera Omnia I.14, E 41, 73-86; On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
Wikipedia, Bernoulli number.
J. Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen, Journal für die reine und angewandte Mathematik, 94 (1883), 203-232.
FORMULA
T(n, k) = [x^(n-k)](skp(n,x+1)-skp(n,x-1))/2) where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Jul 23 2012
E.g.f. exp(x*t)*tanh(t) = 0*(t^0/0!) + 1*(t^1/1!) + (2*x)*(t^2/2!) + (3*x^2-2)*(t^3/3!) + ...
V_n(x) = -x^n + Sum_{k=0..n} C(n,k)*Euler(k)*(x+1)^(n-k).
EXAMPLE
Triangle begins:
[0] 0;
[1] 1, 0;
[2] 0, 2, 0;
[3] -2, 0, 3, 0;
[4] 0, -8, 0, 4, 0;
[5] 16, 0, -20, 0, 5, 0;
[6] 0, 96, 0, -40, 0, 6, 0;
[7] -272, 0, 336, 0, -70, 0, 7, 0;
[8] 0, -2176, 0, 896, 0, -112, 0, 8, 0;
[9] 7936, 0, -9792, 0, 2016, 0, -168, 0, 9, 0;
MAPLE
# Polynomials V_n(x):
V := proc(n, x) local k, pow; pow := (n, k) -> `if`(n=0 and k=0, 1, n^k); add(binomial(n, k)*euler(k)*pow(x+1, n-k), k=0..n) - pow(x, n) end:
# Coefficients a(n):
seq(print(seq(coeff(n!*coeff(series(exp(x*t)*tanh(t), t, 16), t, n), x, k), k=0..n)), n=0..8);
MATHEMATICA
skp[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; v[n_, x_] := (skp[n, x+1]-skp[n, x-1])/2; t[n_, k_] := Coefficient[v[n, x], x, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
PROG
(Sage)
R = PolynomialRing(QQ, 'x')
@CachedFunction
def skp(n, x) : # Swiss-Knife polynomials A153641.
if n == 0 : return 1
return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
def A162660(n, k) : return 0 if k > n else R((skp(n, x+1)-skp(n, x-1))/2)[k]
matrix(ZZ, 9, A162660) # Peter Luschny, Jul 23 2012
CROSSREFS
V_n(k), n=0, 1, ..., k=0: A155585, k=1: A009832,
V_n(k), k=0, 1, ..., V_0: A000004, V_1: A000012, V_2: A005843, V_3: A100536.
Sequence in context: A278520 A239246 A171700 * A324848 A090330 A332447
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jul 09 2009
STATUS
approved