login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009832
Expansion of e.g.f. tanh(x)*exp(x).
4
0, 1, 2, 1, -4, 1, 62, 1, -1384, 1, 50522, 1, -2702764, 1, 199360982, 1, -19391512144, 1, 2404879675442, 1, -370371188237524, 1, 69348874393137902, 1, -15514534163557086904, 1, 4087072509293123892362, 1, -1252259641403629865468284, 1
OFFSET
0,3
FORMULA
E.g.f. tanh(x)*exp(x).
G.f.: x/U(0)/(1-x) where U(k) = 1 - x + x^2*(k+1)*(k+2)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 14 2012
G.f.: x/(1-x)/Q(0), where Q(k) = 1 + x - x*(k+2)/(1+x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 21 2013
If n is even, a(n) ~ (-1)^(1+n/2) * n! * 2^(n+2)/Pi^(n+1). - Vaclav Kotesovec, Oct 23 2013
MAPLE
G(x):=exp(x)*tanh(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..27 ); # Zerinvary Lajos, Apr 05 2009
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Tanh[x]Exp[x], {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Aug 18 2012 *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec(serlaplace( tanh(x)*exp(x) ) ) ) \\ Joerg Arndt, Apr 21 2013
CROSSREFS
Sequence in context: A145998 A218952 A177413 * A016445 A244554 A364953
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
Definition clarified by Harvey P. Dale, Aug 18 2012
STATUS
approved