login
A364953
a(n) = A364952(A005940(1+n)), where A364952 is Dirichlet inverse of A364557, which is Möbius transform of A005941 [the inverse permutation of A005940].
2
1, -1, -2, -1, -4, 2, 0, -1, -8, 4, 12, 2, 8, 0, 0, -1, -16, 8, 24, 4, 56, -12, -8, 2, 48, -8, -40, 0, -16, 0, 0, -1, -32, 16, 48, 8, 112, -24, -16, 4, 240, -56, -232, -12, -208, 8, 0, 2, 224, -48, -208, -8, -528, 40, 64, 0, -288, 16, 112, 0, 32, 0, 0, -1, -64, 32, 96, 16, 224, -48, -32, 8, 480, -112, -464, -24
OFFSET
0,3
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
A364557(n) = if(1==n, 1, 2^(primepi(vecmax(factor(n)[, 1]))+(bigomega(n)-omega(n))-1));
memoA364952 = Map();
A364952(n) = if(1==n, 1, my(v); if(mapisdefined(memoA364952, n, &v), v, v = -sumdiv(n, d, if(d<n, A364557(n/d)*A364952(d), 0)); mapput(memoA364952, n, v); (v)));
A364953(n) = A364952(A005940(1+n));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Aug 29 2023
STATUS
approved