This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214027 The number of zeros in the fundamental Pisano period of the sequence A000129 mod n. 14
 1, 1, 2, 1, 4, 2, 1, 1, 2, 2, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 4, 2, 2, 1, 4, 2, 1, 1, 2, 2, 2, 2, 4, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 4, 2, 2, 1, 2, 2, 2, 2, 4, 1, 2, 1, 4, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS This is intimately connected with A175181 and A214028, much as A001176 is intimately connected with A001175 and A001177. In fact, A175181(n)/a(n) = A214028(n). This is the same divisibility relation that holds between A001175, A001176 and A001177. LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 FORMULA From Jianing Song, Sep 12 2018: (Start) For odd primes p, a(p^e) = 4 if A214028(p) is odd; 1 if A214028(p) is even but not divisible by 4; 2 if A214028(p) is divisible by 4. a(n) = 2 for n == 3 (mod 8). For primes p, a(p^e) = 1 if p == 7 (mod 8), 4 if p == 5 (mod 8). Conjecture: 1/6 of the primes congruent to 1 mod 8 satisfy a(p^e) = 1, 2/3 of them satisfy a(p^e) = 2 and 1/6 of them satisfy a(p^e) = 4. (End) MATHEMATICA Join[{1}, Table[s = t = Mod[{0, 1}, n]; zeros = 0; While[tmp = Mod[2*t[] + t[], n]; t[] = t[]; t[] = tmp; s != t, If[tmp == 0, zeros++]]; zeros, {n, 2, 100}]] (* T. D. Noe, Jul 09 2012 *) PROG (PARI) A000129(m) = ([2, 1; 1, 0]^m)[2, 1] a(n) = my(i=1); while(A000129(i)%n!=0, i++); znorder(Mod(A000129(i+1), n)) \\ Jianing Song, Aug 10 2019 CROSSREFS Cf. A175181, A214028. Similar sequences: A001176, A322906. Sequence in context: A244554 A194735 A130544 * A007739 A290935 A031424 Adjacent sequences:  A214024 A214025 A214026 * A214028 A214029 A214030 KEYWORD nonn AUTHOR Art DuPre, Jul 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 12 19:41 EST 2019. Contains 329078 sequences. (Running on oeis4.)