The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214028 Entry points for the Pell sequence: smallest k such that n divides A000129(k). 19
 1, 2, 4, 4, 3, 4, 6, 8, 12, 6, 12, 4, 7, 6, 12, 16, 8, 12, 20, 12, 12, 12, 22, 8, 15, 14, 36, 12, 5, 12, 30, 32, 12, 8, 6, 12, 19, 20, 28, 24, 10, 12, 44, 12, 12, 22, 46, 16, 42, 30, 8, 28, 27, 36, 12, 24, 20, 10, 20, 12, 31, 30, 12, 64, 21, 12, 68, 8, 44, 6, 70, 24, 36, 38 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Conjecture: A175181(n)/A214027(n) = a(n). This says that the zeros appear somewhat uniformly in a period. The second zero in a period is exactly where n divides the first Lucas number, so this relationship is not really surprising. From Jianing Song, Aug 29 2018: (Start) The comment above is correct, since n divides A000129(k*a(n)) for all integers k and clearly a(n) divides A175181(n), so the zeros appear uniformly. a(n) <= 4*n/3 for all n, with equality holds iff n is a power of 3. (End) LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 Bernadette Faye, Florian Luca, Pell Numbers whose Euler Function is a Pell Number, arXiv:1508.05714 [math.NT], 2015 (called z(n)). N. Robbins, On Pell numbers of the form p*x^2, where p is prime, Fib. Quart. 22  (4) (1984) 340-348, definition 1. FORMULA If p^2 does not divide A000129(a(p)) (that is, p is not in A238736) then a(p^e) = a(p)*p^(e - 1). If gcd(m, n) = 1 then a(mn) = lcm(a(m), a(n)). - Jianing Song, Aug 29 2018 EXAMPLE 11 first divides the term A000129(12) = 13860 = 2*3*5*7*11. MAPLE A214028 := proc(n)     local a000129, k ;     a000129 := [1, 2, 5] ;     for k do         if modp(a000129[1], n) = 0 then             return k;         end if;         a000129[1] := a000129[2] ;         a000129[2] := a000129[3] ;         a000129[3] := 2*a000129[2]+a000129[1] ;     end do: end proc: seq(A214028(n), n=1..40); # R. J. Mathar, May 26 2016 MATHEMATICA a[n_] := With[{s = Sqrt@ 2}, ((1 + s)^n - (1 - s)^n)/(2 s)] // Simplify; Table[k = 1; While[Mod[a[k], n] != 0, k++]; k, {n, 80}] (* Michael De Vlieger, Aug 25 2015, after Michael Somos at A000129 *) Table[k = 1; While[Mod[Fibonacci[k, 2], n] != 0, k++]; k, {n, 100}] (* G. C. Greubel, Aug 10 2018 *) PROG (PARI) pell(n) = polcoeff(Vec(x/(1-2*x-x^2) + O(x^(n+1))), n); a(n) = {k=1; while (pell(k) % n, k++); k; } \\ Michel Marcus, Aug 25 2015 CROSSREFS Cf. A001175, A001176, A001177, A214027, A175181. Sequence in context: A202690 A257978 A193358 * A079533 A072872 A135359 Adjacent sequences:  A214025 A214026 A214027 * A214029 A214030 A214031 KEYWORD nonn AUTHOR Art DuPre, Jul 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 11:49 EST 2020. Contains 332279 sequences. (Running on oeis4.)