login
A257978
For p = prime(n), number of primes k with k < p such that F_{p-(p/k)} == 0 (mod p), where F_i = A000045(i) and (a/b) denotes the Legendre symbol.
2
0, 1, 1, 1, 2, 4, 4, 3, 3, 4, 5, 8, 5, 7, 6, 7, 10, 6, 10, 11, 11, 10, 11, 10, 13, 12, 12, 12, 12, 18, 15, 19, 19, 14, 16, 16, 21, 19, 19, 18, 19, 15, 20, 22, 20, 22, 20, 22, 26, 19, 29, 29, 24, 30, 28, 23, 27, 27, 36, 25, 30, 31, 29, 36, 35, 28, 32, 34, 29
OFFSET
1,5
LINKS
MATHEMATICA
Join[{0}, Table[Sum[Boole[Divisible[Fibonacci[Prime[n] - JacobiSymbol[Prime[n], Prime[k]]], Prime[n]]], {k, n - 1}], {n, 2, 50}]] (* Alonso del Arte, May 16 2015 *)
PROG
(PARI) forprime(p=2, 400, i=0; forprime(k=2, p, if(Mod(fibonacci(p-kronecker(p, k)), p)==0, i++)); print1(i, ", "))
CROSSREFS
Cf. A257979.
Sequence in context: A237496 A202690 A342754 * A193358 A214028 A079533
KEYWORD
nonn
AUTHOR
Felix Fröhlich, May 15 2015
STATUS
approved