login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237496
Number of ordered ways to write n = k + m (0 < k <= m) with pi(k) + pi(m) - 2 prime, where pi(.) is given by A000720.
6
0, 0, 0, 0, 0, 1, 2, 4, 4, 3, 2, 3, 3, 3, 5, 3, 1, 4, 5, 5, 7, 4, 1, 2, 1, 1, 1, 1, 1, 3, 6, 7, 8, 8, 8, 8, 8, 9, 11, 11, 11, 11, 9, 7, 7, 4, 1, 2, 1, 2, 3, 5, 7, 10, 14, 14, 14, 10, 6, 10, 14, 16, 19, 16, 13, 12, 11, 10, 7, 6, 5, 3, 3, 4, 3, 6, 9, 13, 17, 18
OFFSET
1,7
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 5.
(ii) Any integer n > 23 can be written as k + m (k > 0 and m > 0) with pi(k) + pi(m) prime. Also, each integer n > 25 can be written as k + m (k > 0 and m > 0) with pi(k) + pi(m) - 1 prime.
EXAMPLE
a(6) = 1 since 6 = 3 + 3 with pi(3) + pi(3) - 2 = 2 + 2 - 2 = 2 prime.
a(17) = 1 since 17 = 2 + 15 with pi(2) + pi(15) - 2 = 1 + 6 - 2 = 5 prime.
a(99) = 1 since 99 = 1 + 98 with pi(1) + pi(98) - 2 = 0 + 25 - 2 = 23 prime.
MATHEMATICA
PQ[n_]:=n>0&&PrimeQ[n]
p[k_, m_]:=PQ[PrimePi[k]+PrimePi[m]-2]
a[n_]:=Sum[If[p[k, n-k], 1, 0], {k, 1, n/2}]
Table[a[n], {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 08 2014
STATUS
approved