login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237498
Riordan array (1/(1-x-x^2), x/(1+2*x)).
1
1, 1, 1, 2, -1, 1, 3, 4, -3, 1, 5, -5, 10, -5, 1, 8, 15, -25, 20, -7, 1, 13, -22, 65, -65, 34, -9, 1, 21, 57, -152, 195, -133, 52, -11, 1, 34, -93, 361, -542, 461, -237, 74, -13, 1, 55, 220, -815, 1445, -1464, 935, -385, 100, -15, 1, 89, -385, 1850, -3705
OFFSET
0,4
COMMENTS
First column: Fibonacci numbers A000045(n+1).
LINKS
Indranil Ghosh, Rows 0..100, flattened
FORMULA
Sum_{k=0..n} T(n,k)*x^k = A000045(n+1), A098600(n), A000032(n+1), A027961(n+1), A027974(n) for x = 0, 1, 2, 3, 4 respectively.
T(n,k) = T(n-1,k-1) - T(n-1,k) + 3*T(n-2,k) - T(n-2,k-1) + 2*T(n-3,k) - T(n-3,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 2, T(2,1) = -1, T(n,k) = 0 if k<0 or if k>n.
T(n,0) = T(n-1,0) + T(n-2,0) with T(0,0) = T(1,0) = 1, T(n,k) = T(n-1,k-1) - 2*T(n-1,k) for k>=1.
G.f.: (1+2*x)/((1+2*x-y*x)*(1-x-x^2)).
EXAMPLE
Triangle begins:
1;
1, 1;
2, -1, 1;
3, 4, -3, 1;
5, -5, 10, -5, 1;
8, 15, -25, 20, -7, 1;
13, -22, 65, -65, 34, -9, 1;
...
Production matrix is:
1, 1;
1, -2, 1;
2, 0, -2, 1;
4, 0, 0, -2, 1;
8, 0, 0, 0, -2, 1;
16, 0, 0, 0, 0, -2, 1;
32, 0, 0, 0, 0, 0, -2, 1;
64, 0, 0, 0, 0, 0, 0, -2, 1;
...
MATHEMATICA
nmax=10; Flatten[CoefficientList[Series[CoefficientList[Series[(1 + 2*x) / ((1 + 2*x - y*x) * (1 - x - x^2)), {x, 0, nmax }], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 15 2017 *)
CROSSREFS
Columns: A000045, A084179.
Sequence in context: A052265 A306565 A055068 * A319516 A015138 A157807
KEYWORD
easy,sign,tabl
AUTHOR
Philippe Deléham, Feb 08 2014
STATUS
approved