The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098600 a(n) = Fibonacci(n-1) + Fibonacci(n+1) - (-1)^n. 10
 1, 2, 2, 5, 6, 12, 17, 30, 46, 77, 122, 200, 321, 522, 842, 1365, 2206, 3572, 5777, 9350, 15126, 24477, 39602, 64080, 103681, 167762, 271442, 439205, 710646, 1149852, 1860497, 3010350, 4870846, 7881197, 12752042, 20633240, 33385281, 54018522 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums of A098599. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,2,1). FORMULA G.f.: (1+2*x) / ((1+x)*(1-x-x^2)). a(n) = Sum_{k = 0..n} binomial(k, n-k) + binomial(k-1, n-k-1). a(n) = A020878(n) - 1 = A001350(n) + 1. a(n) = Lucas(n) - (-1)^n. - Paul Barry, Dec 01 2004 a(n) = A181716(n+1). - Richard R. Forberg, Aug 30 2014 a(n) = [x^n] ( (1 + x + sqrt(1 + 6*x + 5*x^2))/2 )^n. exp( Sum_{n >= 1} a(n)*x^n/n ) = Sum_{n >= 0} Fibonacci(n+2)*x^n. Cf. A182143. - Peter Bala, Jun 29 2015 From Colin Barker, Jun 03 2016: (Start) a(n) = (-(-1)^n + ((1/2)*(1-sqrt(5)))^n + ((1/2)*(1+sqrt(5)))^n). a(n) = 2*a(n-2) + a(n-3) for n > 2. (End) E.g.f.: (2*exp(3*x/2)*cosh(sqrt(5)*x/2) - 1)*exp(-x). - Ilya Gutkovskiy, Jun 03 2016 a(n) = A014217(n) + A000035(n). - Paul Curtz, Jul 27 2023 MAPLE with(combinat): P:=proc(n) fibonacci(n-1)+fibonacci(n+1)-(-1)^n; end: seq(P(i), i=0..40); # Paolo P. Lava, Mar 09 2018 MATHEMATICA Table[-(-1)^n + LucasL[n], {n, 0, 39}] (* Alonso del Arte, Aug 30 2014 *) Table[Fibonacci[n - 1] + Fibonacci[n + 1] - (-1)^n, {n, 0, 40}] (* Vincenzo Librandi, Aug 31 2014 *) CoefficientList[ Series[-(1 + 2x)/(-1 + 2x^2 + x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 2, 1}, {1, 2, 2}, 40] (* Robert G. Wilson v, Mar 09 2018 *) PROG (Magma) [Fibonacci(n-1) + Fibonacci(n+1) - (-1)^n: n in [0..50]]: // Vincenzo Librandi, Aug 31 2014 (PARI) a(n)=fibonacci(n-1) + fibonacci(n+1) - (-1)^n; \\ Joerg Arndt, Oct 18 2014 (PARI) Vec((1+2*x)/((1+x)*(1-x-x^2)) + O(x^30)) \\ Colin Barker, Jun 03 2016 CROSSREFS Cf. A000045, A008346, A182143. First differences of A014217 and A062724. Cf. A000032, A099925, A181716. Cf. A000035. Sequence in context: A365825 A099926 A355021 * A181716 A261866 A147766 Adjacent sequences: A098597 A098598 A098599 * A098601 A098602 A098603 KEYWORD easy,nonn AUTHOR Paul Barry, Sep 17 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 19:34 EST 2023. Contains 367563 sequences. (Running on oeis4.)