

A257979


Smallest prime p for which exactly n primes k with k < p exist such that F_p(p/k) == 0 (mod p), where F_i = A000045(i) and (a/b) denotes the Legendre symbol, or 0 if no such p exists.


1




OFFSET

0,1


COMMENTS

Smallest p = prime(x) such that A257978(x) == n.
Conjecture: a(9) = 0 (based on observation of the asymptotic behavior of A257978).
a(10)a(16) are 59, 71, 101, 97, 139, 127, 149.


LINKS

Table of n, a(n) for n=0..8.


PROG

(PARI) for(n=0, 10, forprime(p=2, , i=0; forprime(k=2, p, if(Mod(fibonacci(pkronecker(p, k)), p)==0, i++)); if(i==n, print1(p, ", "); break({1}))))


CROSSREFS

Cf. A257978.
Sequence in context: A024861 A025101 A025105 * A095984 A229550 A172258
Adjacent sequences: A257976 A257977 A257978 * A257980 A257981 A257982


KEYWORD

nonn,more


AUTHOR

Felix FrÃ¶hlich, May 15 2015


STATUS

approved



