

A257977


Largest k such that there are at least k numbers b_i, 1 <= b_i <= n, each having gcd(b_i,n) >= k.


1



1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 4, 1, 2, 3, 4, 1, 4, 1, 4, 3, 2, 1, 6, 5, 2, 3, 4, 1, 6, 1, 4, 3, 2, 5, 6, 1, 2, 3, 8, 1, 6, 1, 4, 7, 2, 1, 8, 7, 6, 3, 4, 1, 6, 5, 8, 3, 2, 1, 10, 1, 2, 9, 8, 5, 6, 1, 4, 3, 10, 1, 9, 1, 2, 7, 4, 7, 6, 1, 10, 9, 2, 1, 12
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Initially similar to A070966, it diverges at n = 30. Here a(30) = 6, while A070966(30) = 8.
From Robert Israel, May 28 2015: (Start)
a(p^m) = p^floor(m/2) if p is prime.
a(p*q) = p if p < q are primes.
a(n) >= A033676(n). (End)
First differs from A034880 at a(24).  Sean A. Irvine, Sep 10 2020


LINKS

Ivan Neretin, Table of n, a(n) for n = 1..10000


EXAMPLE

Each of the four numbers 4, 6, 8, and 12 has common divisor with 12 which is no less than four. But there are no five such numbers among [1..12]. Hence a(12)=4.


MAPLE

f:= n > nops(select(`>=`, sort(map(igcd, [$1..n], n), `>`)[$1..n], 0)):
map(f, [$1..100]); # Robert Israel, May 28 2015


MATHEMATICA

f[n_] := Count[Reverse[Sort[GCD[Range[n], n]]]  Range[n], x_ /; x >= 0]; Table[f[n], {n, 84}]


CROSSREFS

Cf. A033676, A070966.
Sequence in context: A095165 A046805 A034880 * A070966 A338669 A219254
Adjacent sequences: A257974 A257975 A257976 * A257978 A257979 A257980


KEYWORD

nonn


AUTHOR

Ivan Neretin, May 15 2015


STATUS

approved



