login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257976
Numbers equal to the sum of the prime factors, with multiplicity, of the previous k numbers, for some k.
3
23, 94, 123, 147, 269, 806, 1049, 1081, 1179, 1277, 1775, 2575, 5374, 14865, 20490, 20845, 27177, 54934, 72599, 87031, 101827, 391514, 452574, 534389, 1197146, 1219229, 1297767, 1327510, 4565354, 4946164, 6124646, 7967984, 8637602, 8869951, 9615708, 10061718
OFFSET
1,1
COMMENTS
Number of terms < 10^k: 0, 2, 6, 13, 20, 24, 35, 49, 62, 68, 79, 91, ..., . - Robert G. Wilson v, May 19 2015
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..91 (terms < 10^12, first 58 terms from Robert G. Wilson v)
MATHEMATICA
sopfr[n_] := Plus @@ Times @@@ FactorInteger@ n; sopfr[1] = 0; ls = Table[0, {50}]; k = 1; lst = {}; While[k < 10^7, If[ MemberQ[ Accumulate@ ls, k], AppendTo[lst, k]]; ls = Join[{sopfr@ k}, Drop[ls, -1]]; k++]; lst (* dated May 15 2015 and modified after a suggestion from Giovanni Resta in a private e-mail dated Apr 20 2015 to Robert G. Wilson v, May 21 2015 *)
PROG
(PARI) sopfr(n)=my(f=factor(n)); sum(i=1, #f[, 1], f[i, 1]*f[i, 2]);
is(n)=if(n<23, return(0)); my(s); for(k=1, n, s+=sopfr(n-k); if(s>=n, return(n==s))) \\ Charles R Greathouse IV, May 15 2015
CROSSREFS
Union of A257525 and A257930 which are disjoint.
Sequence in context: A244632 A042030 A042032 * A183011 A158544 A154376
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, May 15 2015
STATUS
approved