OFFSET
1,1
COMMENTS
The identity (1250*n^2 - 100*n + 1)^2 - (25*n^2 - 2*n)*(250*n - 10)^2 = 1 can be written as A154374(n)^2 - a(n)*A154378(n)^2 = 1 (see also the second comment in A154374). - Vincenzo Librandi, Jan 30 2012
The continued fraction expansion of sqrt(a(n)) is [5n-1; {1, 3, 1, 10n-2}]. - Magus K. Chu, Sep 04 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
From Vincenzo Librandi, Jan 30 2012: (Start)
G.f.: x*(23 + 27*x)/(1-x)^3.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). (End)
E.g.f.: (25*x^2 + 23*x)*exp(x). - G. C. Greubel, Sep 15 2016
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {23, 96, 219}, 50] (* Vincenzo Librandi, Jan 30 2012 *)
PROG
(PARI) a(n)=25*n^2-2*n \\ Charles R Greathouse IV, Dec 26 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 08 2009
STATUS
approved