login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154374 a(n) = 1250*n^2 - 100*n + 1. 3
1151, 4801, 10951, 19601, 30751, 44401, 60551, 79201, 100351, 124001, 150151, 178801, 209951, 243601, 279751, 318401, 359551, 403201, 449351, 498001, 549151, 602801, 658951, 717601, 778751, 842401, 908551, 977201, 1048351, 1122001 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (1250*n^2 - 100*n + 1)^2 - (25*n^2 - 2*n)*(250*n - 10)^2 = 1 can be written as a(n)^2 - A154376(n)*A154378(n)^2 = 1. - Vincenzo Librandi, Jan 30 2012

This is the case s = 5 of the identity (2*s^4*n^2 - 4*s^2*n + 1)^2 - (s^2*n^2 - 2*n)*(2*s^3*n - 2*s)^2 = 1. - Bruno Berselli, Jan 30 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 29 2012

G.f.: x*(1151 + 1348*x + x^2)/(1-x)^3. - Vincenzo Librandi, Jan 29 2012

E.g.f.: -1 + (1 + 1150*x + 1250*x^2)*exp(x). - G. C. Greubel, Sep 15 2016

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {1151, 4801, 10951}, 40] (* Vincenzo Librandi, Jan 30 2012 *)

PROG

(PARI) a(n)=1250*n^2-100*n+1 \\ Charles R Greathouse IV, Dec 27 2011

(MAGMA) I:=[1151, 4801, 10951]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 30 2012

CROSSREFS

Cf. A154376, A154378.

Sequence in context: A179036 A179037 A098976 * A114046 A035888 A252438

Adjacent sequences:  A154371 A154372 A154373 * A154375 A154376 A154377

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Jan 08 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 13:56 EST 2019. Contains 329149 sequences. (Running on oeis4.)