|
|
A351679
|
|
Discriminants of imaginary quadratic fields with class number 41 (negated).
|
|
0
|
|
|
1151, 2551, 2719, 3079, 3319, 3511, 6143, 9319, 9467, 10499, 10903, 11047, 11483, 11719, 11987, 12227, 12611, 13567, 14051, 14411, 14887, 14983, 16067, 16187, 19763, 20407, 20771, 21487, 22651, 24971, 25171, 26891, 26987, 27739, 28547, 29059, 29251, 30859
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Sequence contains 109 terms; largest is 296587.
The class group of Q[sqrt(-d)] is isomorphic to C_41 for all d in this sequence.
|
|
LINKS
|
Table of n, a(n) for n=1..38.
Eric Weisstein's World of Mathematics, Class Number
|
|
PROG
|
(Sage)
ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
[-a[0] for a in ls if a[1] == 41]
|
|
CROSSREFS
|
Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664-A351666.
Sequence in context: A179036 A179037 A098976 * A154374 A114046 A035888
Adjacent sequences: A351676 A351677 A351678 * A351680 A351681 A351682
|
|
KEYWORD
|
nonn,fini
|
|
AUTHOR
|
Andy Huchala, Mar 28 2022
|
|
STATUS
|
approved
|
|
|
|