|
|
A351680
|
|
Discriminants of imaginary quadratic fields with class number 42 (negated).
|
|
0
|
|
|
1959, 2183, 2911, 3039, 3176, 3687, 3831, 4039, 4103, 4184, 4735, 4904, 4952, 5288, 5935, 5959, 6179, 6452, 6487, 6611, 6623, 6632, 6836, 7447, 7604, 7811, 7892, 7988, 8459, 8552, 8579, 8744, 8852, 9368, 9428, 9607, 10231, 10643, 10772, 10996, 11023, 11099
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Sequence contains 339 terms; largest is 280267.
The class group of Q[sqrt(-d)] is isomorphic to C_42 for all d in this sequence.
|
|
LINKS
|
Table of n, a(n) for n=1..42.
Eric Weisstein's World of Mathematics, Class Number
|
|
PROG
|
(Sage)
ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
[-a[0] for a in ls if a[1] == 42]
|
|
CROSSREFS
|
Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664-A351666.
Sequence in context: A232389 A209946 A200857 * A157627 A072598 A159213
Adjacent sequences: A351677 A351678 A351679 * A351681 A351682 A351683
|
|
KEYWORD
|
nonn,fini
|
|
AUTHOR
|
Andy Huchala, Mar 28 2022
|
|
STATUS
|
approved
|
|
|
|