login
A351683
Squares that are also 4-dimensional pyramidal numbers.
0
0, 1, 196, 38025, 7376656, 1431033241, 277613072100, 53855504954161, 10447690348035136, 2026798072013862225, 393188378280341236516, 76276518588314186021881, 14797251417754671747008400, 2870590498525818004733607721, 556879759462590938246572889476
OFFSET
1,3
COMMENTS
This sequence is a quartic divisibility sequence. a(n+1) divides a(m+1) whenever n divides m. This is because this sequence is based on solutions to a special case of the general Jacobi quartic form y^2 = b*x^4 - 2*c*x^2 + 1. - Thomas Scheuerle, May 06 2022
FORMULA
a(n) = A007655(n)^2.
a(2*n - 2) = (a(n) - a(n-1))^2, for n > 1. - Thomas Scheuerle, May 06 2022
O.g.f.: A(x) = x^2*(1 - x^2)/(1 - 196*x + 390*x^2 - 196*x^3 + x^4). With offset 0, this is the case P1 = 196, P2 = 194, Q = 1 of a 3-parameter family of fourth-order linear divisibility sequences. See A100047 for further details. - Peter Bala, Nov 28 2022
EXAMPLE
196 is a term because 196 = 14^2 is a perfect square and 196 = (2*6 + 5*6^2 + 4*6^3 + 6^4)/12 is the 6th four-dimensional pyramidal number.
MATHEMATICA
Select[Table[1/12 (2 n + 5 n^2 + 4 n^3 + n^4), {n, 0, 75000}], IntegerQ[Sqrt[#]]&]
CROSSREFS
Intersection of A000290 and A002415.
Sequence in context: A145020 A333641 A260863 * A353064 A013755 A071410
KEYWORD
nonn
AUTHOR
Kelvin Voskuijl, May 05 2022
EXTENSIONS
a(11)-a(14) from Amiram Eldar, May 05 2022
a(15) from Kelvin Voskuijl, Jun 05 2022
STATUS
approved