|
|
A006203
|
|
Discriminants of imaginary quadratic fields with class number 3 (negated).
(Formerly M5131)
|
|
51
|
|
|
23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883, 907
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also n such that Q(sqrt(-n)) has class number 3. Lubelski in 1936 proved that 907 is maximal term of this sequence. - Artur Jasinski, Oct 07 2011
|
|
REFERENCES
|
H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 514.
J. M. Masley, Where are the number fields with small class number?, pp. 221-242 of Number Theory Carbondale 1979, Lect. Notes Math. 751 (1982).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
MATHEMATICA
|
Union[ (-NumberFieldDiscriminant[ Sqrt[-#]] & ) /@ Select[ Range[1000], NumberFieldClassNumber[ Sqrt[-#]] == 3 & ]] (* Jean-François Alcover, Jan 04 2012 *)
|
|
PROG
|
(PARI) ok(n)={isfundamental(-n) && quadclassunit(-n).no == 3} \\ Andrew Howroyd, Jul 20 2018
(Sage) [n for n in (1..1000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==3] # G. C. Greubel, Mar 01 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
fini,nonn,full,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|