login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006200
Number of partitions into pairs.
(Formerly M4263)
1
1, 6, 55, 610, 7980, 120274, 2052309, 39110490, 823324755, 18974858540, 475182478056, 12848667150956, 373081590628565, 11578264139795430, 382452947343624515, 13397354334102974934, 496082324933446766724, 19360538560004548357830, 794275868644522931369185
OFFSET
1,2
REFERENCES
G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonne, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = A079267(n + 2, 3). - Sean A. Irvine, Jan 24 2017
a(n) ~ 2^(n + 3/2) * n^(n + 2) / (3 * exp(n + 1)). - Vaclav Kotesovec, May 20 2018
MAPLE
a:= proc(n) option remember; `if`(n<2, n,
(n*(4*n^2-7)*a(n-1)+(n+1)*(2*n+1)*a(n-2))/((2*n-1)*(n-1)))
end:
seq(a(n), n=1..20); # Alois P. Heinz, Jan 24 2017
MATHEMATICA
Table[(2*n+1)! * Hypergeometric1F1[1-n, -1-2*n, -2] / (3*2^n*(n-1)!), {n, 1, 20}] (* Vaclav Kotesovec, Jan 24 2017 *)
CROSSREFS
Cf. A079267.
Sequence in context: A371776 A372210 A365840 * A376176 A243691 A151345
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Jan 24 2017
STATUS
approved